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Abstract

New ideas often recombine existing ones; this insight is emphasized in recent economic
growth theories, but evidence on its empirical relevance is scarce. This paper takes combina-
torial growth to measurement by studying the pharmaceutical industry, where the distinction
between novelty (discovering new building blocks) and recombination (assembling building
blocks into products) is transparent. I document the rising importance of recombination,
the firm life-cycle from knowledge accumulation to recombination, and the value premia for
novelty. Motivated by these facts, I develop a theory of firm dynamics that distinguishes
firm knowledge stocks from product portfolios. Innovation operates along two distinct yet
intertwined margins: novel innovation expands knowledge, while combinatorial innovation
deploys that knowledge to create new products. The calibrated model captures salient
empirical patterns, implies sustained growth through rising recombination, and highlights
sharp policy trade-offs: subsidizing novelty boosts short-run growth, while subsidizing
recombination raises long-run growth with heterogeneous effects across firms.
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1 Introduction

New ideas often arise by recombining existing ones. Modern software development, for example,
combines reusable libraries to build new applications; drug discovery likewise proceeds by sys-
tematically varying and recombining known chemical structures to develop new therapies. In
The Theory of Economic Development, Schumpeter emphasized that development is propelled
by new combinations, repurposing and recombining ingredients of existing ones (Schumpeter,
1934).1 This view raises a central question for economic growth: does recombination crowd out
fundamentally novel ideas and slow progress, or does an expanding universe of recombinations
sustain it? Recent theory formalizes the dynamics of combinatorial innovation and its implications
for growth (e.g., Weitzman, 1998; Jones, 2023), but empirical evidence is thin: the literature
largely treats “combinatorial growth” as a metaphor rather than a measured phenomenon. The
policy implications are immediate: if innovation is primarily combinatorial, priorities should
tilt toward knowledge diffusion and tools that scale search over recombinations (e.g., artificial
intelligence, AI); if novelty is essential, targeted support for basic research should take precedence.

This paper takes the idea of combinatorial growth to measurement and quantifies its empirical
relevance for aggregate growth. I proceed in three steps. First, I study the roles of novelty
(discovering new ingredients) versus recombination (assembling ingredients into products) in
the context of the pharmaceutical industry, where their distinction is transparent and directly
observable. I uncover the rising importance of recombination, the firm life-cycle from knowledge
accumulation to recombination, and the value premia for novelty. Second, motivated by these
facts, I develop a new growth theory that formalizes combinatorial growth. I build on Klette
and Kortum (2004) which, in its original form, conflates a firm’s knowledge stock and product
portfolio. This distinction takes center stage in my model: firms must both acquire knowledge, i.e.,
innovation capacity, through “novel innovation” and apply that capacity to create new products
through “combinatorial innovation.” Innovation and growth thus operate along two distinct
but intertwined margins: knowledge acquisition and knowledge application. Third, I discipline
and quantify the model using micro-level pharmaceutical data. The calibrated model identifies
combinatorial innovation as the engine that sustains growth and reveals a salient policy trade-off:
subsidizing novelty delivers a powerful but temporary boost in growth, whereas subsidizing
recombination raises growth persistently.

To begin with, I focus on the pharmaceutical industry, an empirical setting where innovations
1The combinatorial nature of innovation has long been recognized across disciplines. Mathematician Henri

Poincaré remarked that “to create consists precisely in not making useless combinations and in making those
which are useful and which are only a small minority.” Biologist François Jacob likened evolution to the work
of “a tinkerer,” constructing new functions by recombining existing parts. Computer scientist and economist
Herbert Simon argued that complex systems are “nearly decomposable” and built from a “restricted alphabet of
elementary terms,” a modularity that enables powerful recombination.
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are constructed from standard building blocks and the abstract notion of “recombination” becomes
concrete and directly observable. I exploit a standard chemistry measure that decomposes each
pharmaceutical innovation, i.e., a drug, into its constituent functional groups, discrete chemical
“ingredients” that govern its molecular properties. This measure allows me to classify a drug as
novel if it introduces a previously unseen functional group, and as a recombination if it creates
a new co-occurrence of previously used functional groups. This approach applies to all small-
molecule drugs, which account for 75% of drugs approved by the FDA’s Center for Drug Evaluation
and Research since 2000. The advantages of this setting are threefold: (1) functional groups are
standard chemical concepts; their presence in a drug is discrete; off-the-shelf algorithms identify
them from drugs (Ertl, 2017); (2) the pharmaceutical industry is highly innovation-intensive
and offers rich, longitudinal data; (3) the drug discovery process is inherently combinatorial,
making my measurement both intuitive and consistent with how chemists conceptualize drug
development.

I apply this decomposition to the set of patented small-molecule anti-allergic drugs2, a
therapeutic area with relatively simple drug molecular structure and a steady R&D presence
since the 1930s. Three patterns emerge. First, recombination is far more prevalent than novelty
and has become more so over time. From 1990 – 2010, 79% of new drugs are recombinations of
existing functional groups, while 13% introduce new functional groups; over time, novelty declines
as recombination rises. Among recombinations, 35% are within-firm (combining only functional
groups the firm has previously used) and 44% are across-firm (incorporating at least one functional
group pioneered by another firm that is new to the focal firm). Second, a firm’s accumulated
knowledge stock, measured as the number of distinct functional groups previously used in its
patented drugs, predicts both the level and the composition of its innovation: knowledge-rich
firms develop more drugs and specialize in within-firm combination, whereas less knowledgeable
firms are more likely to adopt functional groups new to the firm – a life cycle from early knowledge
accumulation to later internal recombination. Third, conditional on entering clinical trials, drugs
with novel functional groups command larger market and scientific premia, respectively measured
as the stock market response to patenting and patent forward citations, than recombinations.

Motivated by these facts, I then propose a new Schumpeterian theory that formalizes com-
binatorial growth to quantify its importance and to study firms’ trade-off between novelty and
recombination. Building on Klette and Kortum (2004), my main departure is to distinguish a
firm’s knowledge stock from its product portfolio. I model firms as being characterized by two
state variables: the number of products they sell (i.e., product portfolio) and the number of

2Molecules in my dataset span various development stages: preclinical research, clinical trials, and, in some
cases, FDA-approval. In regulatory/industry usage, these molecules are referred to as “compounds”, “drug
candidates”, “investigational drugs”, or “approved drugs”, depending on their development progress. For brevity, I
refer to them as “drugs” when the context is unambiguous.
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ingredients they own (i.e., knowledge stock). Firms innovate in two ways: (a) combinatorial
innovation, which recombines existing ingredients to create a new product, and (b) novel in-
novation, which obtains an ingredient new to the firm and uses it to create a new product. A
larger ingredient stock expands firm capacity to obtain new ingredients and create new products.
The framework captures the conceptual trade-offs between basic and applied research and splits
innovation and growth into these two distinct but connected margins. The model matches salient
empirical features of the pharmaceutical industry: (1) firms with larger ingredient stocks tilt
toward combinatorial innovation, implying a life cycle of initial ingredient accumulation through
novel innovation to subsequent internal recombination; (2) firm value is additively separable into
an ingredient component and a product component, implying that conditional on success, novel
innovation is more valuable than recombination because the new ingredient increases the option
value of future discovery and recombination.

I calibrate the model to microdata from the anti-allergic market and quantify the importance
of combinatorial growth. The calibration centers on two elasticity parameters that govern to
what extent richer knowledge improves a firm’s capacity for novel and combinatorial innovation.
I identify these elasticities using two moments: (1) the concentration of knowledge across firms,
higher elasticities implying higher concentration, and (2) the value gap between successful novel
versus combinatorial innovations, higher elasticities implying greater value of knowledge and thus
a larger gap. Despite its parsimony, the calibrated model matches key untargeted micro-level
patterns quantitatively, including the joint distribution of knowledge stocks and drug portfolios
across firms and the elasticity of innovation outcomes with respect to knowledge stocks. The
model implies that within-firm combination accounts for 30% of aggregate growth.

To examine the implications of declining novelty and rising recombination, I introduce “idea
coincidence” into the baseline model: when a firm succeeds in novel innovation, the obtained
ingredient may already exist elsewhere in the economy, pioneered earlier by another firm. As the
aggregate ingredient pool expands over time, the probability of such coincidence rises, making
genuinely new-to-market ingredients increasingly rare while expanding the scope for recombination.
This full model yields three aggregate implications: declining novelty, rising recombination, and
sustained growth powered by abundant combinatorial opportunities. Conversely, shutting down
recombination, both across- and within-firm, reduces growth by 80% in the short run and to zero
in the long run, as genuinely new-to-market ingredients become progressively harder to find.

I then use this full model to evaluate three policy instruments that respectively target
(a) genuinely novel discoveries, (b) across-firm combination, and (c) within-firm combination.
Rewards for novelty generate the largest short-run boost to entry and growth but leave long-run
outcomes unchanged. Rewards for across- and within-firm combination raise the long-run growth
rate but have opposite distributional effects: rewards for across-firm combination benefit less-
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knowledgeable firms and reduce concentration, while rewards for within-firm combination benefit
more-knowledgeable firms and increase concentration.

This paper makes three contributions. First, I bring the abstract discussion of combinatorial
innovation to measurement by identifying the pharmaceutical industry as a natural empirical
setting. Using a rich dataset, I document a series of market- and firm-level facts that deepen the
understanding of how innovations through recombination and novelty unfold in practice. Second,
I develop a theory that goes beyond the traditional view of firms as portfolios of products. I
separate innovation investment and growth into two distinct but intertwined margins: generating
new ideas and creating new products by applying existing ideas. The theory is thus an advance
in its own right, beyond providing a unified explanation for the empirical patterns observed in
the pharmaceutical industry. Third, the theory identifies combinatorial innovation as the primary
engine of sustained growth and reveals sharp policy trade-offs between subsidizing novelty and
subsidizing recombination. These implications speak directly to real-world policy instruments that
differentially support basic versus applied research and suggest that the optimal choice depends
on a policymaker’s prioritized time horizon. While my empirical setting is the pharmaceutical
industry, innovation by recombining granular building blocks is widely observed, appearing in
settings such as materials science, software engineering, modular product design and, more broadly,
citation networks of scientific publications and patents. The model mechanisms are general and
therefore apply broadly.

Related literature. This paper builds on the classic view that innovation is fundamentally
combinatorial (e.g., Schumpeter, 1934; Romer, 1992; Arthur, 2009). The closest antecedents are
theoretical contributions that treat ideas as combinations of existing “ingredients.” Weitzman
(1998) develops a recombinant-growth model in which the space of ideas expands combinatorially,
so that long-run growth is constrained only by the capacity to search and process this space.
Jones (2023) models ideas as combinations of “ingredients” and shows that combinatorial draws
from thin-tailed distributions can sustain exponential growth. These theories largely treat
“combinations” as a metaphor rather than a measured phenomenon. I contribute by mapping
“ingredients” to observable chemical structures in pharmaceuticals and using these empirics to
discipline both theory and quantification.

Existing empirical measures of recombination include Uzzi et al. (2013), who infer combination
of knowledge from citation networks; Akcigit, Kerr and Nicholas (2013) and Youn et al. (2015),
who operationalize it via patent technology classes; and Dix and Lensman (2024), who study
“combination therapy” at the drug-regimen level. My measure is closest to Dix and Lensman
(2024) but goes deeper: whereas they treat the concurrent use of multiple drugs in a regimen as a
combination, I decompose each drug into its constituent functional groups, thereby identifying
each product as a combination of smaller “ingredients.” The research focus also differs: Dix and
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Lensman (2024) emphasize a particular inefficiency in combinatorial innovation, whereas I analyze
the trade-off between novelty and recombination and, by embedding the mechanism in a macro
framework, study the aggregate consequences of combinatorial innovation.

My work is related to the literature on incremental and radical innovation, which distinguishes
modest, small-scale improvements to existing technologies from breakthrough, market-creating
innovations (e.g., König, Lorenz and Zilibotti, 2016; Kelly et al., 2021; Acemoglu, Akcigit and
Celik, 2022; Krieger, Li and Papanikolaou, 2022; König et al., 2022; Ribeiro, 2025). Unlike much
of this literature, which often infers “incremental” vs. “radical” ex post from innovation outcomes,
my measure observes directly whether a new product employs a novel ingredient. Using this
measure, I show that firms with smaller knowledge stocks disproportionately adopt ingredients
pioneered elsewhere, whereas knowledge-rich firms primarily recombine what they already know.
This pattern echoes König et al. (2022), who document, in a different setting, that as firms
accumulate capabilities, they transition from imitation and technology adoption toward internal
innovation.

My finding of declining novelty over time speaks to the long-standing literature on “ideas getting
harder to find” (e.g., Evenson, 1982; Kortum, 1993, 1997; Jones, 2009). More recently, Bloom
et al. (2020) document sharp declines in research productivity across semiconductors, agriculture,
and medical technologies; Fort et al. (2025) show that researchers’ patenting productivity has
risen, while output growth exhibits a secular decline conditional on patenting activities, indicating
“growth is getting harder to find.” My drug-level evidence aligns with the “harder to find” view, in
the sense that genuinely novel ingredients become rarer, while aggregate progress can be sustained
since the expanding stock of known ingredients supports more recombination.

I also build on the Schumpeterian endogenous-growth literature pioneered by Grossman and
Helpman (1991) and Aghion and Howitt (1992) as embedded in the framework of Klette and
Kortum (2004). This framework has proved empirically successful in matching firm-level facts
(Lentz and Mortensen, 2008) and underpins applications ranging from heterogeneous innovation
types (Akcigit and Kerr, 2018) to heterogeneous markups and misallocation (Peters, 2020). My
departure is to separate firm knowledge stocks from product portfolios and to model an explicit
choice between novel and combinatorial innovation. This separation implies that innovation
outcomes are shaped more by a firm’s knowledge stock than product portfolio and predicts a firm
lifecycle from early-stage knowledge accumulation to later-stage recombination, a salient pattern
borne out in the data.

Lastly, my analysis connects to biomedically grounded studies of idea production. Tranchero
(2024) exploits genome-wide association studies (GWAS) as quasi-experimental, data-driven
signals and shows that firms with deeper domain knowledge better screen noisy predictions from
big data. This complementarity is consistent with my mechanism: while the feasible set of
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functional-group combinations is broadly common across firms, domain knowledge, experience
with particular functional groups, improves screening of the vast combinatorial space, increasing
the likelihood of finding useful combinations. Relatedly, Krieger, Li and Papanikolaou (2022)
document underinvestment in radical pharmaceutical innovation due to risk aversion, and Frankel
et al. (2023) estimate the value of dynamic spillovers from drug discovery.

Roadmap. The rest of the paper proceeds as follows. Section 2 provides background on
the pharmaceutical industry, introduces ingredient-based measurement, and details the data. In
Section 3, I use my measurement of combinatorial growth to provide empirical evidence of its
importance. Section 4 develops the baseline model. Section 5 applies it to the anti-allergic market
and quantifies the contribution of within-firm combinatorial innovation to aggregate innovation
dynamics. Section 6 introduces idea coincidence into the baseline framework and uses the full
model to quantify the contribution of total combinatorial innovation (across-firm plus within-firm)
and evaluate innovation policies. Section 7 concludes. Appendix contains measurement details,
model extensions, proofs, robustness checks, and additional results.

2 Combinatorial Growth in the Pharmaceutical Industry

To precisely define ingredients and combinations, I focus on the pharmaceutical industry where the
medicinal chemistry literature motivates a chemistry-based method to decompose a pharmaceutical
innovation, i.e., a drug, into its constituent chemical “ingredients”. This pharmaceutical setting
offers three advantages: 1) the chemical “ingredients” to be introduced are standard concepts
in medicinal chemistry, their presence/absence in a drug is discrete and identifiable through
off-the-shelf algorithms, enabling clean measurement of recombination; 2) the pharmaceutical
industry is among the most research-intensive industries and provides a rich, longitudinal dataset;
3) pharmaceutical innovation, especially drug discovery, often features an inherently combinatorial
flavor with subfields that study how drug properties change when basic chemical structures are
substituted or rearranged.

In this section, I describe the background of the pharmaceutical industry and the process
of drug discovery. I explain how this context provides a chemistry-based method to decompose
a drug into its constituent ingredients. I introduce my dataset and methodology to classify
pharmaceutical innovations into different categories according to their novelty.

2.1 Industry Background

The pharmaceutical industry discovers, develops, and markets medicines to prevent, alleviate,
or cure diseases. It is both an economic heavyweight and among the most research-intensive
industries with 27 % – 34% of revenues ploughed back into research annually (Chandra et al.,
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2024). Pharmaceutical companies are divided into two broad types: brand-name companies,
those that are research-based and develop new medicines termed “brand-name drugs”, and
generic companies, those that typically spend little on research and manufacture “generic drugs”,
bioequivalent versions of brand-name drugs once their patents expire (Taylor, 2015). Because
brand-name firms are the primary engine of pharmaceutical innovation, I focus on brand-name
drugs in my analysis.3

Successful innovation in the pharmaceutical industry ultimately materializes as a new drug,
what regulators call a new molecular entity (NME). These NMEs fall into two broad technological
classes: Small-molecule drugs are compact organic compounds (typically ≤ 900 Da) such as
acetaminophen, the active ingredient in Tylenol (see Figure 1). Biologics are much larger protein-
based therapeutics such as vaccines and antibodies. Small-molecule drugs have accounted for 75%
of all drugs approved by the FDA’s Center for Drug Evaluation and Research since 2000, and
58% of pharmaceutical-sector revenue in 2023 (Arnum, 2024). I focus my study on small-molecule
drugs because their relatively simple and well-defined chemical structures make it feasible to
identify each drug’s underlying “ingredients”.

The development of a small-molecule drug begins with drug discovery, the first stage of the
pharmaceutical R&D pipeline. In this stage, scientists search the vast chemical space for new
“hits” that can modulate a biological target implicated in disease. It typically involves three core
tasks: (i) identifying a therapeutic target (e.g., a protein); (ii) generating candidate molecules; and
(iii) refining those candidates to maximize potency and minimize toxicity. To generate candidates,
researchers often rely on combinatorial chemistry, using high-throughput screening technologies
to assess up to millions of molecules. Only a few survive the discovery stage; those survivors are
usually patented prior to clinical testing to secure intellectual property and deter rivals. The low
survival rate highlights the extraordinary uncertainty inherent in drug development (Taylor, 2015).
Following discovery, development proceeds to pre-clinical development, clinical trials, regulatory
review, manufacturing, and post-marketing surveillance. My analysis focuses on patented drugs
because they reflect idea generation at the discovery stage, where the underlying “ingredients”
are created, combined, and refined.

2.2 Functional groups: the chemical “ingredients”

To study how firms innovate – by inventing new ingredients or recombining existing ones – I first
represent chemical structure in a consistent, analyzable way. I now turn to functional groups, the
key structural units that underpin drug behavior and allow me to classify innovations empirically.

3When a brand-name drug loses its patent protection, typically, generic companies enter with bioequivalent
versions, which significantly lower drug price. In 2024, 90% of prescriptions are filled by generic drugs while they
only account for 13% of prescription drug spending (Association for Accessible Medicines, 2024).
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AcetaminophenNote: Figure presents the chemical structure of an acetaminophen molecule. The carbon backbone, a benzene
ring, is identified and boxed in green. Two functional groups, a secondary amide group (–NH–C(––O)–) and a
phenolic hydroxyl group (–OH), are identified and circled in red.

Figure 1: Acetaminophen molecule, active ingredient of Tylenol.

In this application, “innovations” refer to small-molecule drugs, whose chemical structures, i.e.,
the arrangements of atoms, determine their behavior in the human body. A typical small-molecule
drug consists of functional groups and a carbon backbone. In general, functional groups play
the decisive role: these specific clusters of atoms determine chemical reactivity and drive the
key interactions with biological targets (enzymes, receptors), thereby shaping drug potency,
selectivity, and how human body absorbs and distributes the drug (Ertl, 2017). By contrast, the
carbon backbone serves primarily as a stable framework that positions these functional groups
in three-dimensional space and maintains drug overall molecular shape. Figure 1 illustrates the
chemical structure of acetaminophen: the carbon backbone (a benzene ring) is boxed in green,
and two functional groups, a secondary amide group (–NH–C(––O)–) and a phenolic hydroxyl
group (–OH), are circled in red.

Given their central role in determining molecular function, I view a functional group as
an ingredient and thus a small-molecule drug as a combination of its functional groups. This
perspective aligns with how medicinal chemists design and interpret molecules4, and allows me to
decompose any small-molecule drug into a set of identifiable “ingredients”. Using functional groups
as the unit of analysis offers a key advantage: they are standard units in medicinal chemistry;
their presence within a drug is discrete and observable, and the medicinal chemistry literature
provides algorithms to identify them from drugs (e.g., Ertl, 2017). This makes the functional
group–based representation both scientifically grounded and empirically tractable, allowing me to
consistently measure innovation across time, firms, and therapeutic classes.

4In small-molecule drug discovery, recombination of chemical structures, in particular functional groups, is
a central organizing principle: medicinal chemists commonly fix a core scaffold and swap or append functional
groups to tune potency, selectivity, and pharmacokinetics. Combinatorial chemistry implements this directly
by enumerating libraries of substituent combinations, while SAR (structure-activity relationships) and QSAR
(quantitative SAR) model structure–activity patterns to predict which substitutions/combinations are most likely
to yield active compounds (e.g., Hansch et al., 1962; Hansch and Fujita, 1964; Free and Wilson, 1964; Gallop et al.,
1994; Macarron et al., 2011).
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There are alternatives. In finance, recent work has used the “Tanimoto coefficient”5 to measure
chemical similarity between drugs (e.g., Krieger, Li and Papanikolaou, 2022). While effective for
ranking overall similarity, Tanimoto coefficient does not reveal which chemical features are novel
or reused, nor does it distinguish between innovation through entirely new components versus
recombinations of known ones.

2.3 Data

I focus my analysis on small-molecule anti-allergic drugs. Narrowing the scope offers two
advantages: (1) anti-allergic drugs generally have relatively simple chemical structures, reducing
complexity in molecular comparisons; (2) innovation activity in this area is steady over my sample
window (1990 – 2010), accounting for roughly 5% of FDA approvals, which ensures a rich sample
of active development efforts.6

My primary data source is Clarivate Analytics’ Cortellis Drug Discovery Intelligence database.
This database is widely used in the pharmaceutical industry and the literature of economics
and finance for empirical analysis of pharmaceutical innovation, investment decisions, and R&D
spillovers (e.g., Krieger, Li and Papanikolaou, 2022; Frankel et al., 2023; Tranchero, 2024). Cortellis
compiles information on drug candidates from publicly available sources such as patent filings,
company reports, press releases, clinical trial registries, and FDA submissions. A drug typically
enters the database either when it is first patented or when it is mentioned in a firm’s pipeline
disclosures. The database includes many later-stage preclinical drugs, which are often patented,
though it may miss early-stage candidates that fail initial screening and are thus never publicly
documented. For drugs that appear in the data, Cortellis backfills development timelines when
possible to improve accuracy (Krieger, Li and Papanikolaou, 2022).

For each drug, I extract its molecular structure, development phase, therapeutic class, mech-
anism of action, originating and developing firms, and associated patents. I link each drug to
its patent records and recover a drug’s invention year as the earliest priority year among its
associated patents. These variables allow me to trace the trajectory of a drug from early-stage
research through clinical trials and to measure both the novelty of its functional groups and the
organizational context of its development. In my sample, the number of drugs recorded increases
sharply after 1985, likely reflecting improvements in digital patent records. I thus restrict my
empirical analysis to the period 1990–2010.

An innovation of this paper is to decompose each drug into its constituent “ingredients” and
5Tanimoto coefficient measures similarity between two molecules based on their chemical features. It takes

values in [0, 1] with higher values indicating greater similarity (Nikolova and Jaworska, 2004).
6Over 1990 – 2010, allergic disease was a major locus of biomedical innovation. There was surging research

output (Dwivedi, 2016), concentrated FDA-approval activity (Kinch and Merkel, 2015), and significant quality
upgrades (Fein et al., 2019).
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Table 1: Summary statistics of small-molecule anti-allergic drug market: 1990–2010

period 1990 - 1995 1996 - 2000 2001 - 2005 2006 - 2010 1990 - 2010

total # active firms 116 112 125 158 310
average # patented drugs per year 697 659 736 526 656
average # functional groups per drug 4.33 4.82 5.12 5.37 4.86
drug share, top 20% firms 79% 74% 70% 72% 78%

Notes: Values are either totals or yearly averages over the indicated period (inclusive of endpoints). “Active
firms” are firms that patent ≥ 1 small-molecule anti-allergic drugs in that year. “Patented drugs” count the
number of patented drugs. “Functional groups per drug” is the number of distinct functional groups per drug.
“Drug share, top 20% firms” is the share of all patented drugs accounted for by the top quintile of firms within
the period, ranking firms by total patented drugs.

thus observe exactly what it comprises. I do so by identifying functional groups from drugs using
the Ertl (2017) algorithm, implemented in Python via the RDKit cheminformatics toolkit (Hall
and Godin, 2017). The algorithm systematically extracts chemically meaningful substructures
based on the presence of heteroatoms and reactive carbon environments (see details in Appendix
A). The resulting dataset covers 13,786 drugs that were developed by 310 firms and spanned
1,044 distinct functional groups.

Table 1 reports summary statistics for my dataset. The number of active patenting firms rose
from 116 (1990 – 95) to 158 (2006 – 10), while annual patented-drug counts were broadly stable
at roughly 650 per year over 1990 – 2010. Molecular complexity increased over time: the average
number of functional groups per drug rose from 4.33 to 5.37.7 The market is concentrated: the
top 20% of firms (ranked by number of patented-drug counts) account for 78% of all patented
drugs over the full period.

Measure combinatorial innovation. I classify each drug in my sample into one of three
mutually exclusive categories based on the functional groups it contains: novel, combination,
or refinement. A novel drug introduces at least one functional group that has not appeared
in any prior drug, representing a breakthrough at the ingredient level. A combinatorial drug
uses only previously known functional groups, but they have not co-appeared in any prior drug
patented by the developing firm.8 Finally, a refinement drug reuses an existing combination of
functional groups by its developing firm, reflecting incremental improvement of known drugs.
This classification allows me to quantify the degree of novelty in drug discovery and to distinguish
between foundational innovations, creative recombinations, and incremental improvements. I

7Drug molecules cannot be too sparsely or too heavily decorated with functional groups. Medicinal chemistry
aims for a middle ground consistent with Lipinski’s Rule of Five to balance potency, permeability, and safety.

8My definition of combinatorial drug is on the firm level. An alternative definition operates on the market level:
a drug is combinatorial if it uses only previously known functional groups and they have not co-appeared in any
prior drug in the market, regardless of the developer. Using the market-level definition leaves the empirical results
qualitatively unchanged and only modestly affects magnitudes. For example, the average share of combinatorial
drugs from 1990 – 2010 falls from 79% to 65%.
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Diphenhydramine (active ingredient of Benadryl, 1922)

Existing drugs

New drugs

III: Refinement (1993)II: Combination (1986)I: Novel (1985)

Fexofenadine (active ingredient of Allegra, 1979)

Note: Functional groups are highlighted with consistent color coding across all panels: green = tertiary amine,
blue = ether group, orange = carboxyl group, gold = hydroxyl group, red = hydroxamic acid moiety. In the
top row, diphenhydramine (1922) and fexofenadine (1979) are treated as the sole prior art and therefore define
the initial, “known” functional-group pool. Assume the two drugs were discovered by different firms, A and B
respectively. The bottom row shows three later drugs from the dataset and how they map onto my innovation
taxonomy, assuming all three were developed by firm A: (i) novel introduces a functional group absent from the
prior pool, (ii) combination unites only known groups, but they had not previously co-appeared in any patented
drug by the developing firm A, and (iii) refinement reuses a co-appearance of known groups previously used by
firm A in diphenhydramine.

Figure 2: Classification of innovation: an example.

further split combinatorial drugs into (i) within-firm combination: combinations formed exclusively
from functional groups previously used by the focal firm, but in a new co-occurrence, and (ii)
across-firm combination: combinations formed by at least one functional group previously used
only by other firms (new to the focal firm) together with the firm’s previously used functional
groups. The within/across split matters because within-firm combinations leverage the firm’s
existing knowledge base, while across-firm combinations draw on external knowledge.

Figure 2 visualizes this functional-group-based taxonomy of pharmaceutical innovation. The
top row shows two existing drugs, diphenhydramine (Benadryl®, 1922) and fexofenadine (Allegra®,
1979). Each colored circle marks one of the functional groups that anchor my analysis: tertiary
amine (green), ether group (blue), carboxyl group (orange), and hydroxyl group (gold). Treating
(hypothetically) these two drugs as the entire prior art, the highlighted functional groups define
the initial ingredient pool available for subsequent recombination. Assume further that they were
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discovered by two different firms, A and B respectively.
The bottom row selects three drugs from my dataset that exemplify each of the three innovation

modes. Assume all three were developed by firm A.

I. Novel (1985). The first drug introduces a hydroxamic acid moiety (red) that is absent from
prior functional-group pool, making it an example of novel innovation.

II. Combination (1986). Here the drug reunites the tertiary amine and ether group from
diphenhydramine with the carboxyl group from fexofenadine (green + blue + orange). By
recombining existing functional groups in a new constellation, it exemplifies combinatorial
innovation. Moreover, it is classified as an across-firm combination, because the carboxyl
group (orange) was used by firm B but new to firm A; if both prior drugs had been developed
by firm A, it would instead be a within-firm combination.

III. Refinement (1993). This compound reuses the tertiary amine (green) and ether group (blue)
from diphenhydramine but embeds them in a different carbon backbone. Because both
functional groups trace to diphenhydramine, it is classified as a refinement.

3 Empirical Importance of Combinatorial Growth

In this section, I apply the measures developed in Section 2 to show that combinatorial innovation
plays a central role in pharmaceutical innovation.

3.1 Fact 1: Contribution of combinatorial innovation

Figure 3 documents four time-series facts on aggregate innovation and its decomposition into novel
versus combinatorial innovation. Panel A shows that the annual flow of newly patented drugs is
fairly stable at roughly 650. Panel B shows a sharp, steady decrease in market-level introductions
of new functional groups, indicating declining novelty. Consistent with this observation, panel
C shows a pronounced shift from novelty toward recombination: the fraction of combinatorial
drugs increases from 68% in 1990 to 82% in 2010, while the novel share decreases from 20%
to 8% (the remainder are refinements). Panel D further splits recombinations into within-firm
and across-firm cases. Both categories exhibit upward trends over time; on average, within-firm
combination accounts for 35% of all new drugs and across-firm combination for 44%.

Overall, the decline in novel discoveries is offset by an increase in recombinations, leaving
aggregate innovation roughly stable.
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Note: This figure documents time-series patterns of anti-allergic market innovation using the Clarivate Cortellis
database. I plot 1990 – 2010 to mitigate mis-classification arising from limited coverage before 1985. Panel A
counts the number of newly patented drugs in year t across all firms. Panel B counts the number of functional
groups that appear for the first time in patented anti-allergic drugs across all firms. Panel C reports the share
of new drugs that are novel or combinatorial as defined in Section 2.3: a drug is novel if it contains at least
one functional group not previously identified in any patented anti-allergic drug; a drug is combinatorial if it
uses only previously known functional groups, but they have not co-appeared in any prior drug patented by
the developing firm. The remaining share (refinement) uses only known functional groups in a co-appearance
previously used by the firm. Panel D further decomposes combinatorial drugs into within-firm and across-firm
cases. Across-firm combinations include at least one functional group previously used only by other firms (new to
the focal firm). Within-firm combinations recombine only functional groups previously used by the focal firm, but
in a new co-occurrence.

Figure 3: Contribution of novel versus combinatorial innovation: 1990 – 2010.
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3.2 Fact 2: Recombination and knowledge across firms

I now examine the importance of combinatorial growth at the firm level. Specifically, I study
how firm innovation intensity and specialization co-vary with its accumulated knowledge. If
combinatorial forces are salient, firms with larger knowledge stocks should benefit from a richer
set of feasible recombinations and, correspondingly, exhibit higher innovation intensity and tilt
from obtaining external knowledge to internal recombinations.

Innovation intensity. I partition 1990 – 2010 into four five-year periods and construct
firm-level variables for each period t as follows. I measure firm f ’s knowledge as the number of
distinct functional groups used in its patented drugs by the start of period t, itotal

f,t .9 Innovation
outcomes over period t are: (1) the number of newly patented drugs, nnew

f,t , and (2) the number of
functional groups appearing in those drugs that were absent from f ’s previously patented drugs,
inew
f,t .

I estimate the relationship between firm knowledge stock and innovation activity using a
Poisson pseudo maximum likelihood (PPML) specification:

E[yf,t|Xf,t] = exp(α + βi ln(itotal
f,t ) + γt),

where yf,t ∈ {nnew
f,t , inew

f,t } and Xf,t denote regressors. The coefficient of interest βi (subscript i for
“ingredients”) is the elasticity of innovation outcome with respect to knowledge itotal

f,t . I control for
period fixed effects across all specifications to absorb aggregate shifts.10

The results are reported in Table 2. Column (1) shows that firms with larger knowledge stocks
are more innovative: a 1% increase in knowledge (prior functional-group holdings) is associated
with 1.07% more newly patented drugs in the subsequent five-year period. Column (2) shows a
parallel pattern for new-to-firm ingredients: a 1% increase in knowledge is associated with 0.33%
more newly adopted functional groups.

A potential omitted variable in this estimation is firm size: mechanically, larger firms tend to
be more knowledgeable and more innovative. Columns (3) – (4) of Table 2 add a size control
to distinguish the role of firm knowledge from size. I proxy size with the cumulative number of
previously patented drugs up to period t, ntotal

f,t .11 The knowledge elasticities remain positive and
9Functional groups are basic chemical structures and thus not patentable per se. In practice, when a promising

functional group is identified, firms often deter competition by filing families of composition-of-matter patents
with broad Markush claims to ring-fence classes of compounds that embody that functional group (e.g., Cohen,
Nelson and Walsh, 2000; Sternitzke, 2013; Wagner, Sternitzke and Walter, 2022). This can limit spillovers of
functional groups across firms and leave the cumulative know-how around functional groups effectively proprietary.

10I do not control for firm fixed effects because itotal
f,t is cumulative and highly persistent, leaving limited

within-firm variation over four five-year periods.
11A more conventional size measure would be firm sales or employment, but consistent data are unavailable for

many non-US and/or privately held firms in the sample. The cumulative number of prior patented drugs provides
a comparable, consistently observed proxy.
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Table 2: Innovation outcomes by firm knowledge: 1990–2010

(1) (2) (3) (4)

nnew
f,t inew

f,t nnew
f,t inew

f,t

knowledge, ln(itotal
f,t ) 1.07 0.33 0.88 0.47

(0.08) (0.05) (0.25) (0.17)
size, ln(ntotal

f,t ) 0.11 -0.09
(0.16) (0.10)

period fixed effect ✓ ✓ ✓ ✓

R2 0.65 0.18 0.65 0.18
observations 265 265 265 265

Note: The sample spans 1990 – 2010 and is split into four five-year periods. All columns use Poisson
pseudo–maximum likelihood specification with period fixed effects: E[yf,t|Xf,t] = exp(α + βi ln(itotal

f,t ) +
βn ln(ntotal

f,t ) + γt). The dependent variables are the number of new drugs patented by firm f in period t in
columns (1) and (3) and the number of newly adopted functional groups in those drugs in columns (2) and (4).
Columns (1) - (2) include firm knowledge only (ln(itotal

f,t )), where itotal
f,t is measured as the number of distinct

functional groups used in f ’s patented drugs by the start of period t. Columns (3) - (4) include both firm
knowledge and size (ln(itotal

f,t ), ln(ntotal
f,t )), where ntotal

f,t is measured as its total number of patented drugs by the
start of period t. Firms with no new patented drugs during the period are treated as exits and thus dropped.
Standard errors are clustered at firm level and reported in parentheses.

statistically significant: a 1% increase in knowledge predicts 0.88% more newly patented drugs
(column 3) and 0.47% more newly adopted functional groups (column 4) over the period. By
contrast, the size coefficients are small and statistically insignificant in both outcomes (0.11 and
-0.09, respectively).

Taken together, Table 2 indicates that knowledge – rather than size – primarily correlates
with firm-level innovation intensity.12

Innovation specialization. I next examine how the composition of innovation varies with
firms’ knowledge stocks. For each firm-period observation (f, t), I compute four shares within
nnew

f,t , corresponding to new drugs that are (1) novel, %novelf,t, (2) across-firm combination,
%combacross

f,t , (3) within-firm combination, %combwithin
f,t , and (4) refinements, %reff,t, as defined in

Section 2.3. For compactness, index these types by k ∈ {1, 2, 3, 4}, and write yk
f,t for the share of

type k.
I estimate the relationship between firm knowledge stock and innovation specialization using

12Appendix Table E.16 estimates the same specification but disaggregates new drugs nnew
f,t by innovation category

(novel, combination, refinement); Appendix Table E.17 likewise disaggregates new functional groups inew
f,t into

those new to the market versus new only to the firm. The same qualitative patterns hold.
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Table 3: Innovation specialization by firm knowledge: 1990–2010

(1) (2) (3) (4) (5) (6)

%novelf,t %combacross
f,t %combwithin

f,t %novelf,t %combacross
f,t %combwithin

f,t

knowledge, ln(itotal
f,t ) -0.01 -0.14 0.14 0.07 −0.16 0.13

(0.01) (0.01) (0.01) (0.04) (0.06) (0.04)
size, ln(ntotal

f,t ) −0.05 0.01 0.01
(0.03) (0.04) (0.02)

period fixed effect ✓ ✓ ✓ ✓ ✓ ✓

observations 265 265

Note: The sample spans 1990 – 2010 and is split into four five-year periods. All columns use fractional
multinomial logit specification with period fixed effects (see equations 3.1 – 3.2). The dependent variables are
(i) share of drugs that includes a new-to-market functional group, %novelf,t; (ii) share of drugs that recombines
across firms, using at least one functional group previously used in the market but not by firm f , %combacross

f,t ;
(iii) share of drugs that recombines only within the firm, using functional groups previously used by f but not
previously co-appear in the same drug, %combwithin

f,t . Refinement is the base category. Knowledge and size
are defined as in Table 2. Firms with no new patented drugs during the period are treated as exits and thus
dropped. Standard errors are clustered at firm level and reported in parentheses.

a fractional multinomial logit specification (Buis, 2017):

E[yk
f,t|Xf,t] =

exp(αk + βk
i ln(itotal

f,t ) + γk
t )

1 +∑3
j=1 exp(αj + βj

i ln(itotal
f,t ) + γj

t )
, for k ∈ {1, 2, 3}, (3.1)

E[y4
f,t|Xf,t] = 1 −

3∑
j=1

E[yj
f,t|Xf,t], (3.2)

with refinement (k = 4) as the base category. The coefficients of interest βk
i ’s capture how

knowledge correlates with the composition of innovation. Period fixed effects are controlled for in
all specifications to absorb aggregate shifts.

The results are reported in Table 3. Columns (1) – (3) show that larger knowledge stocks
are associated with a lower share of across-firm combinations and a higher share of within-firm
combinations: the coefficients on ln(itotal

f,t ) are -0.14 for %combacross
f,t (column 2) and +0.14 for

%combwithin
f,t (column 3), with small effects on %novelf,t (column 1, -0.01). In terms of magnitude:

moving from the median knowledge firm (23 functional groups) to one standard deviation above
(77 functional groups), an increase of about 1.2 in ln(itotal

f,t ), implies roughly 17% fewer across-firm
combinations (−0.14 × 1.2) and 17% more within-firm combinations (0.14 × 1.2).

Columns (4) – (6) add a size control, ln(ntotal
f,t ). The knowledge pattern remains: the coefficients

on ln(itotal
f,t ) are -0.16 for %combacross

f,t (column 5) and +0.13 for %combwithin
f,t (column 6), implying

that for the same 23 → 77 comparison, the increase in knowledge is associated with about 19%
fewer across-firm combinations (column 5, −0.16 × 1.2) and 16% more within-firm combinations
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(column 6, 0.13 × 1.2). By contrast, the size coefficients are small and statistically insignificant
from zero across all three shares.13

Taken together, Table 3 indicates that knowledge stocks – rather than size – predict special-
ization; as knowledge accumulates, firms rely less on obtaining external knowledge and more on
recombining what they already know. This pattern maps specialization along the knowledge
distribution and suggests a firm life cycle: early-stage knowledge accumulation followed by
later-stage internal recombination.14

3.3 Fact 3: Combinations are less valuable than novelty

Innovation is increasingly combinatorial at the market level. Whether this reallocation is benign
or costly depends on the relative value of different innovation types. I therefore examine value
measures and show that, conditional on entering clinical trials, drugs classified as novel command
systematically higher value than combinatorial or refinement innovations.

Ideally, a drug’s value is its expected profits net of development costs. Because most drugs
in my sample never receive FDA approval, direct measurement is infeasible. Following the
literature (e.g., Krieger, Li and Papanikolaou, 2022), I measure drug value using value of its
associated patents. Firms typically file composition-of-matter patents on all promising drugs by
the end of drug discovery stage and, if the project advances, layer on method-of-use, formulation,
and process/manufacturing patents during development.15 Consequently, the market value and
scientific impact of these patents provide informative signals about a drug’s appropriable economic
returns and underlying knowledge value even when it does not reach FDA approval.

Clarivate Cortellis links each drug to its associated patents; in my sample, over 95% of drugs
connect to at least one patent. I merge these links with (i) patent market value estimates and
forward citations from Kogan et al. (2017) and (ii) patent 10-year breakthrough index from Kelly

13The coefficient on ln(itotal
f,t ) is 0.07 for %novelf,t (column 4) and is marginally significant. This may reflect

that one pathway to discovering new functional groups is by combining existing ones; accordingly, firms with larger
knowledge stocks may also specialize in developing new functional groups. A fuller exploration of this mechanism
is left for future work.

14A potential concern is a finite-alphabet effect: if the universe of functional groups is limited, firms that have
already explored many functional groups will mechanically have fewer opportunities to adopt external ones and
thus appear to tilt toward within-firm combination. Two pieces of evidence suggest this is not driving the results.
First, over 1990 – 2010 the most knowledgeable firm had used about 32% of all functional groups observed in the
market at the time, and the 95th-percentile firm used about 11%, leaving ample scope for across-firm adoption.
Second, a placebo experiment in which firms form drugs by randomly sampling functional groups reproduces
the signs in Table 3 but with much smaller magnitudes; see Appendix Table E.18. Together, these facts bolster
the view that abundant internal combinatorial opportunities – not a finite-alphabet constraint – shift firms from
across-firm to within-firm combination.

15In my baseline specification, I include all patents linked to a drug, since each reflects aspects of the drug’s
expected payoff and costs. Results are robust to restricting the sample to patents issued within ten years of the
earliest priority date among the drug’s linked patents, which more closely approximates primary composition-of-
matter patents.
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et al. (2021).16 The unit of observation is the patent-drug pair. I estimate the PPML specification
in equation (3.3) with dependent variable yp,d ∈ {patent market value, patent forward citations}
and the linear specification in equation (3.4) with yp,d equal to patent 10-year breakthrough index:

E[yp,d|Xp,d] = exp(α + βc1
c
d +

∑
k∈K

βk
1

k
d +

∑
k∈K

βk
c 1

k
d × 1

c
d + γt(p) + µf(p)), (3.3)

yp,d = α + βc1
c
d +

∑
k∈K

βk
1

k
d +

∑
k∈K

βk
c 1

k
d × 1

c
d + γt(p) + µf(p) + ϵp,d, (3.4)

where innovation types K = {novel, across-firm combination, within-firm combination}; refine-
ment is the omitted type. 1k

d indicates innovation type k, and 1
c
d = 1 if drug d enters clinical trials.

The specification rests on a simple intuition: novel innovations are potentially more valuable than
other types of innovations when they embody useful knowledge. I use clinical-trial entry as an
indicator of drug usefulness and thus 1c

d effectively partitions all drugs into two groups by their
usefulness. The coefficients have a transparent interpretation: βk compares type k to refinement
among drugs that never entered clinical trials, while βk

c captures the additional premia for type k

versus refinement among drugs that did. All specifications include patent issue-year fixed effects
γt(p) and firm fixed effects µf(p).

Table 4 reports the estimation results. Column (1) documents the correlation between
innovation types and the stock-market valuation of patents. Among drugs that never entered
clinical trials, the type coefficients βk are small and statistically insignificant, indicating no
systematic differences across innovation types. Among drugs that did, the interaction coefficients
βk

c are positive and significant for all three types. Relative to refinements, the implied market-value
premia are: 183% (= exp(1.02 + 0.02) − 1) for novel innovation, 95% (= exp(0.74 − 0.07) − 1) for
across-firm combination, and 73% (= exp(0.56 − 0.01) − 1) for within-firm combination. Thus,
conditional on clinical-trial entry, novel innovation carries the largest market-value premia.

Column (2) focuses on forward citations. Similarly, among drugs that never entered clinical
trials, there are no systematic differences in scientific value across innovation types. Among
drugs that did, all three types earn positive scientific premia relative to refinements: novel
290% (= exp(1.31 + 0.05) − 1), across-firm combination 197% (= exp(0.85 + 0.24) − 1), and
within-firm combination 123% (= exp(0.68 + 0.12) − 1). Overall, novel innovation carries the
highest scientific-value premia. Column (3) turns to 10-year breakthrough index. Among drugs
that entered clinical trials, premia are again positive: relative to refinements, novel drugs score
10% (= 0.11 − 0.01) higher, across-firm combination 10% (= 0.08 + 0.02) higher, and within-firm
combination 5% (= 0.03 + 0.02) higher, though the latter is not statistically significant.

16Kelly et al. (2021) construct a patent-level “importance” (breakthrough) score defined as the ratio of two
similarities: (i) the similarity between the focal patent and future patents, and (ii) the similarity between that
focal patent and past patents. A higher value indicates that the focal patent appeared novel at the time yet
became a strong template for subsequent work, signifying greater importance.

18



Table 4: Innovation value by types: 1990 – 2010

(1) (2) (3)

market valuep,d citationp,d ln(10-year breakthroughp,d)

specification PPML (equation 3.3) PPML (equation 3.3) linear regression (equation 3.4)

βnovel 0.02 0.05 -0.01
(0.11) (0.11) (0.02)

βcomb,across -0.07 0.24 0.02
(0.09) (0.13) (0.02)

βcomb,within -0.01 0.12 0.02
(0.02) (0.10) (0.02)

βnovel
c 1.02 1.31 0.11

(0.36) (0.36) (0.05)
βcomb,across

c 0.74 0.85 0.08
(0.25) (0.20) (0.03)

βcomb,within
c 0.56 0.68 0.03

(0.13) (0.32) (0.03)

R2 0.77 0.38 0.48
observations 5,122 5,075 7,244

Note: Unit of observation: patent-drug. The sample covers anti-allergic drugs 1990 – 2010; patents are those
linked to each drug in Clarivate Cortellis. Columns (1) – (2) use specification (3.3). Column (3) uses specification
(3.4). K = {novel, across-firm combination, within-firm combination} and the omitted category is refinement.
1

k
d equals 1 if drug d falls in category k. 1c

d equals 1 if drug d goes into clinical trial, a usefulness indicator. The
dependent variables are patent market value, forward citations, and log-transformation of breakthrough index
from Kogan et al. (2017) and Kelly et al. (2021). βk measures the type-k value difference relative to refinement
among drugs that never entered clinical trials, and βk

c is the additional premia for type k among drugs that did.
All specifications include patent issue-year fixed effects γt(p) and firm fixed effects µf(p). Standard errors are
clustered at the firm level and reported in parentheses.

Conditional on clinical-trial entry, novel innovation earns the largest market-value and scientific
premia; recombination also outperforms refinement, with across-firm combination surpassing
within-firm combination. These findings align with the results of Krieger, Li and Papanikolaou
(2022), who also document higher value for novelty (measured with Tanimoto distance); my
contribution is to measure novelty at the functional-group level and to include the breakthrough
index as an additional outcome.

Taking stock. Section 3 establishes three facts. First, aggregate innovation is stable but
the composition shifts toward recombination. Second, firms with more accumulated knowledge
innovate more and specialize in within-firm combination. Third, conditional on usefulness,
recombinations are less valuable than novel innovation.
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4 The Baseline Model

Motivated by the empirical evidence documented in Section 3, I build a theory to understand firms’
tradeoff between novelty and recombination and quantify the importance of combinatorial growth.
The framework builds on Klette and Kortum (2004) but makes a conceptual departure: I separate
a firm’s knowledge stock, here represented by a stock of ingredients, from its product portfolio. In
the model, novel innovation expands firm knowledge, while combinatorial innovation deploys that
knowledge to create new products without expanding the knowledge frontier. This distinction
mirrors the conceptual trade-off between basic and applied research: the former builds up the
capacity of innovation, while the latter uses this capacity to generate profit-earning products.

4.1 Firm innovation and creative destruction

Time is continuous. There is a unit mass of differentiated products; each product belongs
to a firm and yields a constant flow profit π̄, net of production cost. Firms are risk neutral,
profit-maximizing, and discount future profits at an exogenous interest rate r.

Incumbent firms. An incumbent firm is characterized by two state variables: its knowledge
stock, represented by the number of ingredients it owns i, and its product portfolio, represented
by the number of products it currently produces (n).17 I model innovation using the standard
Poisson framework: a firm spends resources to generate innovations at a Poisson arrival rate,
and higher spending raises this arrival rate. Specifically, firms expand through two types of
innovations.

Combinatorial innovation. A combinatorial innovation draws on the firm’s existing
knowledge stock to create a new product. The key feature of the R&D technology is that
innovation costs depend on the size of knowledge stock. Choosing a Poisson arrival rate λc

(subscript c for “combinatorial”) for combinatorial innovations requires flow R&D expenditure

Rc(i, λc) = Ac

ϕc

i−ζcλϕc
c , ϕc > 1, ζc > 0. (4.1)

With the knowledge elasticity parameter ζc > 0, a larger stock i lowers the cost of generating
combinatorial arrivals, formalizing the idea emphasized in the theoretical literature that a
richer “alphabet” of ingredients expands feasible combinatorial opportunities and makes successful
combinations easier to find (e.g., Romer, 1992; Weitzman, 1998; Jones, 2023).1819 This specification

17Mapping to the empirical setting, an ingredient corresponds to a functional group, and a product corresponds
to an anti-allergic drug. Drugs are “differentiated” in that each targets a specific allergy variant and patient
population.

18Under this functional form, the marginal gains from combination diminish as knowledge grows, consistent
with the notion that too many possible combinations can exhaust testing capacity (Weitzman, 1998).

19For tractability, I do not model an explicit choice over ingredient subsets, which would generate a 2i-sized
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also aligns with empirical evidence that firms with broader cumulative functional-group repertoires
tend to subsequently patent more drugs, especially within-firm combinations (see Section 3.2).
The parameter ϕc governs the convexity of costs in arrival rate: ϕc > 1 implies increasing marginal
cost of raising λc. The constant Ac > 0 is a scale parameter that captures technology difficulty
specific to combinatorial R&D. A successful combinatorial innovation increases the firm’s product
count, (i, n) 7→ (i, n + 1).

Novel innovation. A novel innovation discovers a new ingredient (new to the focal firm)
and combines it with the firm’s existing stock of ingredients to create a product. I model this
process symmetrically to combinatorial innovation. In particular, choosing a Poisson arrival rate
λb (subscript b for “basic research”) for novel innovations requires a flow R&D expenditure

Rb(i, λb) = Ab

ϕb

i−ζbλϕb
b , ϕb > 1, ζb > 0. (4.2)

With knowledge elasticity ζb > 0, the search for new ingredients becomes less costly as the existing
knowledge stock grows, reflecting a “synergy”/absorptive-capacity effect in idea absorption
(e.g., Arrow, 1962; Cohen and Levinthal, 1989; Griffith, Redding and Van Reenen, 2003). This
formulation is consistent with empirical evidence that firms with larger knowledge stocks adopt
more new functional groups in subsequent drugs (see Section 3.2). The parameter ϕb governs the
convexity of costs in arrival rate: ϕb > 1 implies increasing marginal cost of raising λb. Constant
Ab > 0 is a scale parameter capturing novel-specific technology difficulty. A successful novel
innovation increases both the ingredient stock and the product portfolio, (i, n) 7→ (i + 1, n + 1).20

Note that the effect of knowledge on innovation costs (equations 4.1-4.2) hinges on the
knowledge elasticity parameters ζc and ζb. When ζc is high relative to ζb

21, increases in i reduce
the unit cost of combinatorial search faster than that of novel search (Rc falls more steeply with i

than Rb), so firms with larger knowledge stocks have a comparative advantage in combinatorial
innovation. Note also that, at this stage, a novel innovation introduces an ingredient that is new
to the focal firm, but not necessarily new to the market. Throughout this section and Section 5, I
maintain this simple specification and show that the model matches a series of micro facts. The
full model in Section 6 distinguishes new-to-market from new-to-firm ingredients and is able to

opportunity set as in Weitzman (1998) and Jones (2023), and instead model the arrival rate of combinatorial
products. In Teng (2025), where I study learning in combinatorial innovation, I adopt the standard 2i specification.

I do not let R&D expenditure Rc(i, λc) depend on the number of products n because, empirically (see Section 3.2),
a firm’s innovation activity is not correlated with its prior drug count once knowledge is controlled for. Moreover,
tying costs to n adds complexity and tightens the parameter space for well-behaved equilibria.

20For empirical alignment, I let a novel innovation generate a new product alongside the new ingredient: in the
data I observe drugs, not standalone functional-group arrivals. This choice eases model-data mapping. Model
tractability and qualitative implications are preserved under an alternative specification in which novel innovation
adds only an ingredient.

21The parameter restriction also involves ϕb and ϕc, as later shown in Proposition 1.
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reproduce the macro trends of declining knowledge expansion and rising recombination.
As in the theoretical firm-dynamics literature, R&D efforts are undirected: when a firm

succeeds in either novel or combinatorial innovation, it acquires one product by randomly
displacing an existing product in the market, with each incumbent product equally likely to
be displaced.22 The displaced product exits its incumbent producer’s portfolio. The Poisson
hazard rate of such creative-destruction events, per product, is denoted by µ > 0. I adopt
this creative-destruction (rather than expanding-variety) formulation, because it aligns with my
empirical setting of brand-name drugs, where new chemical entities frequently supplant earlier
ones; for example, second-generation antihistamines replacing first-generation predecessors. Firms
take µ as given; its value is determined in equilibrium.

Each ingredient depreciates at a Poisson hazard rate ξ > 0, capturing the intuition that the
firm fully explores the potential use of an ingredient in finite time and the empirical reality that
knowledge can become obsolete or be forgotten. Introducing ingredient depreciation ensures the
existence of a stationary firm distribution; without it, the number of ingredients per firm would
drift upward without bound.

Entry and exit. I model entry as typical in the firm-dynamics literature (e.g., Akcigit and
Kerr, 2018). A unit continuum of potential entrants can enter through novel innovation. Choosing
a Poisson arrival rate η for novel innovations requires a flow R&D expenditure

Re(η) = Ae

ϕb

ηϕb , (4.3)

where, for simplicity, the convexity parameter ϕb coincides with that for incumbents, but the
scale parameter Ae > 0 captures entrant-specific difficulty in novel discovery. A successful entrant
discovers a new ingredient, creates a new product built from that ingredient, and becomes an
incumbent starting at (i, n) = (1, 1) (one ingredient, one product). I assume entrants have little
prior knowledge and therefore cannot enter through combinatorial innovation.

Firms that lose all their ingredients and products, (i, n) = (0, 0), exit the market.23

4.2 Stationary equilibrium

I now characterize the Markov perfect equilibria of the economy in which firm strategies depend
only on their individual states. Throughout this section and Section 5, I focus on a stationary
equilibrium in which aggregate variables and cross-sectional firm distribution are time-invariant.

22Because each firm produces a finite number of products, the probability that a successful innovator displaces
one of its own products is zero.

23This exit rule is natural: such firms have no profit-generating products, and their innovation cost is effectively
infinite for both novel and combinatorial innovation (equations 4.1 – 4.2), implying a zero continuation value. This
assumption also facilitates analytical tractability, as shown in Proposition 1.
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The full model in Section 6 features a transitional setting.
Stationary equilibrium definition. A stationary equilibrium of the economy consists

of incumbent innovation policy functions (λb, λc), entry rate η, creative destruction rate µ,
ingredient depreciation rate ξ, interest rate r, and a joint distribution of firms Φ(i, n) over states
(i, n), such that (i) incumbents choose (λb, λc) optimally (equation 4.4); (ii) entrants choose η

optimally (equation 4.7); (iii) the total measure of products equals one ∑i

∑
n nΦ(i, n) = 1; (iv)

the distribution Φ(i, n) evolves according to its law of motion and is time-invariant (equation 4.8).
Incumbent firm problem. Firm value functions determine optimal R&D choices. Consider

a firm with i ingredients and n products. The firm takes (r, ξ, µ) as given and chooses R&D
intensities λb (novel innovation) and λc (combinatorial innovation) to maximize the present value
of profits.

Formally, the Bellman equation is:

r V (i, n) = max
λb,λc

{
π̄n︸︷︷︸

flow profits

− Ab

ϕb

i−ζbλϕb
b − Ac

ϕc

i−ζcλϕc
c︸ ︷︷ ︸

innovation costs

+ λb [V (i + 1, n + 1) − V (i, n)]︸ ︷︷ ︸
novel innovation

+ λc [V (i, n + 1) − V (i, n)]︸ ︷︷ ︸
combinatorial innovation

− ξi [V (i, n) − V (i − 1, n)]︸ ︷︷ ︸
ingredient depreciation

− µn [V (i, n) − V (i, n − 1)]︸ ︷︷ ︸
creative destruction

}
. (4.4)

The first line on the right-hand side captures the firm’s instantaneous flow payoff net of innovation
costs. Each product generates the same profit flow π̄, while the cost of innovation depends on the
firm’s knowledge stock i. The second line reflects the expected gains from successful innovation:
novel innovation, at rate λb, expands both the ingredient set and the product portfolio, and
combinatorial innovation, at rate λc, adds a product without expanding knowledge frontier. The
third line captures expected losses in firm value. Ingredients depreciate at a constant Poisson rate
ξ, shrinking the firm’s knowledge stock and thus its future innovative capacity. Each product is
displaced through creative destruction at Poisson rate µ, removing one product from the firm’s
portfolio. Creative destruction leaves the knowledge stock intact: the ingredient count i drops
only via depreciation.

A key feature of this setup is that V (i, n) is linear in n and admits a largely closed-form
characterization. Because the R&D cost functions in equations (4.1) – (4.2) depend only on firm
knowledge i but not on its product count n, acquiring an additional product does not change the
marginal cost of future innovation. Once obtained, a product yields a constant profit flow π̄ until
it is displaced by creative destruction at Poisson rate µ. Consequently, the marginal value of a
product is independent of the rest of the firm’s state and equals the present value of its profit
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stream net of expected loss from creative destruction. The following proposition formalizes this
observation.

Proposition 1. Consider the setup above. The value function is linear in the number of products:

V (i, n) = a(i) + π̄

r + µ
n = V (i, 0) + V (0, n), (4.5)

where a(i) satisfies

ra(i) = ϕb − 1
ϕb

(
Abi

−ζb

) −1
ϕb−1

[
a(i + 1) − a(i) + π̄

r + µ

] ϕb
ϕb−1

+ ϕc − 1
ϕc

(
Aci

−ζc

) −1
ϕc−1

(
π̄

r + µ

) ϕc
ϕc−1

− ξi
[
a(i) − a(i − 1)

]
. (4.6)

The corresponding optimal innovation intensities λb and λc are:

λb(i) =
a(i + 1) − a(i) + π̄

r+µ

Abi−ζb

 1
ϕb−1

, λc(i) =
 π̄

r+µ

Aci−ζc

 1
ϕc−1

,

which depend solely on i and are independent of n.

Proof. See Appendix C. □

Proposition 1 shows that the value function is a separable sum of two terms: one term, a(i),
captures the option value of the current knowledge stock for generating future innovations; the
other, proportional to n, reflects the annuity value of the current product portfolio. Note that,
consistent with empirical evidence in Section 3.2, innovation policy functions (λb, λc) depend only
on firm knowledge i, but not on product portfolio n once i is given.24

The characterization of V (i, n) aligns with two salient empirical observations. First, conditional
on usefulness, novelty is more valuable than combination (Section 3.3). A successful combination
yields

vc = V (i, n + 1) − V (i, n) = π̄

r + µ
,

24Although a(i) does not admit a closed form in general, the value function becomes explicit under the
parameter restriction ϕb − ζb = ϕc − ζc = 1. In this case a(i) is linear in i and the value function reduces to
V (i, n) = a i + π̄

r+µ n, where a solves:

(r + ξ)a = ϕb − 1
ϕb

A
−1

ϕb−1
b

(
a + π̄

r + µ

) ϕb
ϕb−1

+ ϕc − 1
ϕc

A
−1

ϕc−1
c

(
π̄

r + µ

) ϕc
ϕc−1

In this knife-edge case, the marginal value of knowledge is constant, so V (i, n) is linear in both state variables,
and the innovation policy functions (λb, λc) are linear in i and independent of n. This result follows directly from
Proposition 1.
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while a successful novel innovation yields

vb(i) = V (i + 1, n + 1) − V (i, n) = a(i + 1) − a(i) + π̄

r + µ
.

The gap

vb(i) − vc = a(i + 1) − a(i) > 0

is the option value of the additional ingredient, i.e., the incremental value of future innovation
unlocked by expanding the knowledge stock. Second, the separable form of V (i, n) clarifies why
startups can command positive market value even without revenue-generating products or patents:
their knowledge, i.e., the stock of ingredients, embodies an option to create future products, a
value captured precisely by vstartup = V (i, 0) = a(i) > 0.25

Entrant problem. Entrants choose novel R&D intensity η and solve

max
η

−Ae

ϕb

ηϕb︸ ︷︷ ︸
innovation costs

+ η [V (1, 1) − V (0, 0)]︸ ︷︷ ︸
expected gains from entry

⇒ η =
(

V (1, 1) − V (0, 0)
Ae

) 1
ϕb−1

, (4.7)

where the first term captures the cost of novel innovation and the second term reflects the expected
gains from its success. Note that V (0, 0) = 0.

Equilibrium firm distribution. The cross-sectional distribution of firms over knowledge
and products is endogenous and determined in equilibrium. Let Φt(i, n) denote the mass of
firms at time t with knowledge i and product count n so that ∑∞

i=0
∑∞

n=0 nΦt(i, n) = 1 and that
Φt(0, 0) = 0. Given firms’ innovation policies, creative destruction, and the exogenous processes
for ingredient depreciation, Φt(i, n) evolves according to the Kolmogorov forward equation:

Φ̇t(i, n) = λb(i − 1) Φt(i − 1, n − 1) 1{i ≥ 1, n ≥ 1}︸ ︷︷ ︸
novel inflow

+ λc(i) Φt(i, n − 1) 1{n ≥ 1}︸ ︷︷ ︸
combination inflow

+ ξ (i + 1) Φt(i + 1, n)︸ ︷︷ ︸
ingredient depreciation inflow

+ µ (n + 1) Φt(i, n + 1)︸ ︷︷ ︸
creative destruction inflow

+ η 1{i = 1, n = 1}︸ ︷︷ ︸
entry

−
[
λb(i) + λc(i) + ξ i + µ n

]
Φt(i, n)︸ ︷︷ ︸

outflows

, (4.8)

where Φ̇t(i, n) is the time derivative. Intuitively, firms arrive at state (i, n) via: (i) a successful
novel innovation from (i − 1, n − 1) at rate λb(i − 1); (ii) a successful combinatorial innovation

25In the baseline model, successful entry delivers both a new ingredient and a product, so entrants arrive at
(i, n) = (1, 1); states of (i, 0) arise only when products depreciate. In the full model (see Section 6), entry (and
novel innovation) may deliver an ingredient without a product, (i, n) = (1, 0).
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from (i, n − 1) at rate λc(i); (iii) ingredient depreciation from (i + 1, n) at rate ξ(i + 1); or (iv)
creative destruction of a product from (i, n + 1) at rate µ(n + 1). In addition, entry places mass
at (1, 1). Symmetrically, firms leave (i, n) due to: (i) their own novel or combinatorial success;
(ii) ingredient depreciation; or (iii) creative destruction of one of their products. In a stationary
equilibrium, Φ̇t(i, n) = 0 for all (i, n).

Although a closed form for the joint stationary distribution Φ(i, n) is not available in general,
the marginal distribution over knowledge is tractable. Define with a slight abuse of notation:

Φt(i) ≡
∑
n≥0

Φt(i, n), for i ≥ 1 ; Φt(0) ≡
∑
n≥1

Φt(0, n), (4.9)

where for i = 0, I sum only over n ≥ 1 since firms with (i, n) = (0, 0) exit. Summing equation (4.8)
over n cancels terms that only move along the product dimension and yields a one-dimensional
birth-death system in i:

Φ̇t(i) = λb(i − 1) Φt(i − 1) 1{i ≥ 1}︸ ︷︷ ︸
novel inflow

+ ξ (i + 1) Φt(i + 1)︸ ︷︷ ︸
ingredient depreciation inflow

+ η 1{i = 1}︸ ︷︷ ︸
entry

−
[
λb(i) + ξ i

]
Φt(i)︸ ︷︷ ︸

outflows

− µ Φt(0, 1)1{i = 0}︸ ︷︷ ︸
outflows from creative destruction

, (4.10)

where Φ̇t(i) denotes the time derivative. Intuitively, mass arrives at knowledge level i from i − 1
via successful novel innovation and from i + 1 via depreciation; entry adds mass at i = 1. Mass
leaves i due to novel success to i + 1 or depreciation to i − 1. The term µΦt(0, 1)1{i = 0} captures
exit of zero-knowledge single-product firms when their lone product is creatively destructed. The
next proposition characterizes the stationary marginal distribution Φ(i) for i ≥ 1.

Proposition 2. In a stationary equilibrium satisfying equation (4.8), the marginal distribution
over knowledge defined in equation (4.9) satisfies

Φ(1) = η

ξ
, and λb(i) Φ(i) = ξ(i + 1) Φ(i + 1) for all i ≥ 1. (4.11)

In particular, the entire interior {Φ(i)}i≥1 is pinned down by (λb(i), ξ) alone; creative destruction
µ and combination arrival rate λc(i) affect Φ(i) only through boundary objects at i = 0.

Two implications follow. First, the marginal knowledge distribution can be characterized
largely in closed-form: given the incumbent policy λb(i) and the depreciation rate ξ, the entire
interior {Φ(i)}i≥1 is determined by the recursion in Proposition 2; only the boundary mass Φ(0)
depends on product-side dynamics. Second, the recursion links the tail of Φ(i) to the shape of
λb(i): if λb(i) is convex (grows faster than linearly), the stationary knowledge distribution fails to
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exist (mass drifts upward); if λb(i) is linear, Φ(i) exhibits an exponential tail; if λb(i) is concave,
Φ(i) has a thinner tail.

Link creative destruction to growth. The baseline model features creative destruction
but does not explicitly model aggregate growth. Appendix Section B presents a simple extension
that embeds growth and shows that the growth rate equals the product of the innovation step
size and the creative-destruction rate, as is standard in the firm-dynamics literature (Klette and
Kortum, 2004; Akcigit and Kerr, 2018; Peters, 2020). Holding the step size fixed, there is a
one-to-one mapping between creative destruction and growth. For parsimony, the baseline model
therefore uses the creative-destruction rate as a proxy for the growth rate.

4.3 Model mechanism

I solve the model numerically and illustrate its mechanisms by reporting firm value and policy
functions together with the stationary distribution.

Panel A of Figure 4 plots firm value function V (i, n) against knowledge i. The value function
is increasing in i: more ingredients raise the option value of future innovation. For large i,
V (i, n) turns convex in knowledge (two knowledge-positive firms are more valuable together than
apart), implying a merger incentive often absent from standard firm-dynamics models. This is
consistent with empirical observations that pharmaceutical companies often merge, acquire, and
pool chemical libraries to co-develop drugs. The convexity arises because ζc

ϕc−1 > 1 introduces
curvature in the value of knowledge a(i) (see equation 4.6): i enters the second term on the right-
hand side with exponent ζc

ϕc−1 . In numerical experiments, convexity disappears when ζc

ϕc−1 ≤ 1.
When Ab = ∞ (no novel innovation), one can prove that ζc

ϕc−1 > 1 implies a(i) is supermodular.
Panels B and C of Figure 4 plot the optimal arrival rates for novel and combinatorial innovation,

λb(i) and λc(i), respectively, both only dependent on i but not n. Quantitatively, λb(i) and
λc(i) are both increasing in i, indicating that firms with a larger knowledge stock undertake
more innovation of both types. The increase in novel innovation is concave and slower, whereas
the increase in combinatorial innovation is convex and steeper, implying that, under chosen
parameters, firms tilt progressively toward within-firm combination as knowledge accumulates.
This pattern arises because ζb

ϕb−1 < 1 < ζc

ϕc−1 .
Figure 5 turns to the knowledge distribution in stationary equilibrium. Panel A plots the

marginal knowledge distribution Φ(i). In line with Proposition 2, the shape of Φ(i) is pinned
down by λb(i) and ξ; for a concave λb(i), the tail is thinner than exponential. Panel B reports
the conditional knowledge distribution Φ(i|n) for n ∈ {1, 5, 9}. Firm knowledge and product
counts are positively correlated in equilibrium: moving from single-product firms to firms with
nine products, the distribution shifts to the right, reflecting higher average knowledge among
larger product-portfolio firms.
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Note: This figure plots firm value function V (i, n) at n = 1 (panel A), and policy functions for novel innovation
λb(i) (panel B) and combinatorial innovation λc(i) (panel C), respectively. The x-axis is firm number of ingredients
i. Parameter values are set as in Table 5.

Figure 4: Firm value and policy functions.
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Note: Panel A plots the stationary marginal distribution of knowledge, Φ(i). Panel B plots the conditional
knowledge distribution, Φ(i|n), for product counts n ∈ {1, 5, 9}. The x-axis is the number of ingredients i; the
y-axis is the probability mass. Distributions are computed from the stationary solution to the law of motion in
equation (4.8) (using the policy functions) with parameters as in Table 5.

Figure 5: Firm distribution in stationary equilibrium.

While my empirical setting is pharmaceuticals, the model is kept general and its mechanisms
are thus broadly portable to other domains where recombination is central, such as materials
science, software engineering, modular product design, and the citation networks of scientific
publications and patents.
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Table 5: Calibration and parameter choice.

Panel A: Parameters calibrated externally

Parameter Symbol Value Parameter Symbol Value
interest rate r 2% R&D curvature (ϕb, ϕc) 2

Panel B: Parameters calibrated through moment matching

Parameter Symbol Value Moments Data Model
novel R&D, scale Ab 110 pharma R&D / net income 0.8 0.8
comb. R&D, scale Ac 135 share of within-firm comb. drugs 38% 37%
entry novel R&D, scale Ae 750 entrants / active firms 26% 21%
novel R&D knowledge elas. ζb 0.55 ing. share, top 20% firms 56% 56%
comb. R&D knowledge elas. ζc 1.45 value: novel / combinatorial 1.6 1.7
depreciation rate ξ 0.15 ingredient hazard rate 0.15 0.15

5 Quantitative Analysis

I now apply the theory to microdata from the anti-allergic drug market. Despite its parsimony,
with only six internally calibrated parameters, the model is able to fit the micro-level patterns.
I then use the model to quantify the contribution of within-firm combination to aggregate
innovation.

5.1 Calibration

I begin by calibrating the model. After normalizing the product flow profits π̄ = 1, the framework
has nine structural parameters. I pin down these parameters using a combination of external
estimates from the literature and internal calibration via moment matching, as detailed in Table
5.

Externally calibrated parameters. I set the interest rate r = 2%. The pharmaceutical
industry’s cost of capital and equity are estimated to be remarkably high at around 11%, reflecting
substantial risk in drug development and marketing (Sertkaya et al., 2024; Damodaran, 2025).
In the model, this feature is captured endogenously: as indicated in equation (4.5), a product’s
cash flow π is effectively discounted at r + µ. The stationary equilibrium implies µ = 10%, so the
effective discount rate is r + µ = 2% + 10% = 12%, in line with industry estimates.

Calibrating the curvature parameters (ϕb, ϕc) that map R&D outlays into Poisson arrival
rates is challenging in the absence of detailed data on firms’ R&D spending in anti-allergic
drugs. Empirical studies estimating the elasticity of patents with respect to R&D expenditures
typically find values around 0.5, which corresponds to quadratic cost curvature (see, e.g., Blundell,
Griffith and Windmeijer, 2002; Acemoglu et al., 2018). Following the literature, I externally set
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ϕb = ϕc = 2 and provide robustness in Appendix Section D.3. This calibration strategy is also
adopted in other papers with similar model structures (e.g., Akcigit and Kerr, 2018; Peters, 2020;
De Ridder, 2024).

The remaining parameters are calibrated by matching relevant moments. I first solve and
simulate the model, then compute the model-implied moments, and adjust the parameters until
these moments align with their empirical counterparts. The model matches the targeted moments
well. Because each moment is influenced by all parameters, the parameters are determined jointly.
Below, I provide a heuristic identification argument that links each parameter to the moment
most directly informing its value.

Innovation cost function: scale parameters. The joint magnitude of (Ab, Ac) determines
the overall level of innovation costs and hence influences the aggregate R&D-to-net-income-ratio.
Their relative magnitude shapes the relative cost of novel versus combinatorial innovation, and
thus the share of novel versus combinatorial products. I thus jointly calibrate (Ab, Ac) to two
empirical moments: the pharmaceutical industry’s R&D-to-net-income-ratio and the share of
drugs being within-firm combination.26 Drawing on published pharmaceutical industry estimates,
R&D spending is of the same order as net income; I target a moderate R&D-to-net-income-ratio
at 0.8 and show robustness in Appendix Section D.1.27 “Combinatorial innovation” in the baseline
model corresponds to within-firm combination in the empirical analysis (Section 3), whose share,
among non-refinement drugs, is 38% (= 35%/(79% + 13%)).28

For the entrant scale parameter Ae, a natural target would be the entry rate (entrants as a
share of all firms). Because the data do not directly record firm entry/exit – only which firm
patents which drug in which year – I instead target a related rate: the fraction of firms that patent
their first drug in year t divided by all firms that patent at least one drug in year t. Averaged
over 1990-2010, this rate is 26%.29

Innovation cost function: knowledge elasticity parameters. The knowledge elasticities
(ζb, ζc) govern how a firm’s knowledge stock scales its capacity for both novel and combinatorial

26I target R&D-to-net-income-ratio rather than R&D intensity because the model does not have a direct
counterpart of revenue: flow profits π̄ capture revenue net of production cost.

27U.S. pharmaceutical R&D intensity is estimated to be approximately 18% between 2000 – 2019 by the
Congressional Budget Office (Office, 2021) and to be 18% for PhRMA members (mostly big pharmas) and 13% for
firms covered by Business Enterprise Research and Development Survey of the National Science Foundation from
2008 – 2019 by Sertkaya et al. (2024). US pharmaceutical net-income margin is estimated to be approximately
18% for the largest 25 firms and 15% for a broader sample between 2006 – 2015 by the Government Accountability
Office (U. S. Government Accountability Office, 2017) and to be 14% for the largest 35 firms between 2000 – 2018
by Ledley et al. (2020). Overall, R&D spending is at the same order as net income.

28In the baseline model, “novel” means new to the focal firm (not necessarily new to the market). Accordingly,
novel innovation in the model maps to both “novel drug” (a drug including new-to-market functional groups)
and “across-firm combination” (a drug recombining functional groups across firms) in the empirical analysis of
Section 3, whereas combinatorial innovation in the model maps to “within-firm combination” (a drug recombining
functional groups only within the firm).

29The model implies an entry rate of 4.3%, close to the estimate of 5.8% in Akcigit and Kerr (2018).
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innovation. They pin down two aspects of the model. First, they determine the value of knowledge,
which maps into the value difference between novel and combinatorial innovations. Second, they
shape the process of knowledge and product accumulation and hence the equilibrium concentration
of knowledge and products. I therefore discipline (ζb, ζc) with two moments aligned to these
aspects.

First, I target the value difference between novel and combinatorial drugs. In Table 4, column
(1) focuses on market value and implies that, conditional on clinical-trial entry, novel drugs
command on average 63% higher market value than within-firm combinations (exp((1.02+0.02)−
(0.56 − 0.01)) − 1), and across-firm combinations (which the baseline model classifies as “novel”)
command 13% higher market value than within-firm combinations (exp((0.74 − 0.07) − (0.56 −
0.01)) − 1). Column (2) focuses on scientific value and yields analogous premia of 75% and 34%
respectively. Aggregating these pieces, I target a novel-to-combinatorial value ratio of 1.6 in the
baseline calibration and show robustness in Appendix Section D.2. Second, I target the ingredient
share held by the top 20% of firms (ranked by ingredient stock), which is 57% in the data. Section
5.2 details the construction of this moment in the model.

Ingredient depreciation rate. Knowledge in pharmaceuticals is subject to obsolescence,
as technologies and scientific understanding evolve rapidly. In the data, I observe that firms
frequently stop developing drugs with older functional groups and shift toward newer ones. I
estimate the hazard rate at which a firm discontinues the use of a functional group using a
maximum likelihood approach. Specifically, for each firm f , I collect all functional groups fi used
between 1990 and 2010, and record the first and last years of use as (Ffi, Lfi). An ingredient is
considered depreciated (Dfi = 1) if Lfi ≤ 2010. I define its observed duration as

Sfi = min{Lfi, 2010} − Ffi.

The hazard rate ξ̂ is then estimated by the maximum likelihood estimator for an exponential
duration model,

ξ̂ =
∑

fi Dfi∑
fi Sfi

,

which equals the ratio of the total number of depreciation events to the total observed functional
group-years in the sample. I estimate ξ̂ = 0.15 (standard error, 0.002) and calibrate the model’s
ingredient depreciation rate to this value.

5.2 Model validation

This section evaluates the model against a set of untargeted moments. I report two complementary
exercises: one is cross-sectional, and the other traces innovation dynamics over time. First, I
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Note: This figure compares the model and 1990 data for the distribution of knowledge (i.e., functional-group
holdings, panel A) and the joint distribution of knowledge and product portfolio (i.e., patented drugs, panel
B). Firms on the x-axis are ranked by their cumulative knowledge stock itotal

f,t as of 1990; the x-axis shows the
cumulative share of firms from lowest to highest itotal

f,t . Panel A plots a Lorenz-style curve: the y-axis is the
cumulative share of aggregate itotal

f,t as of 1990, capturing the knowledge distribution. Panel B keeps the same x-axis
ranking but changes the y-axis to the cumulative share of products as of 1990, capturing the knowledge-product
joint distribution. Solid lines depict data; dashed lines depict the model. Because firm entry and exit are not
directly observed in the data, I restrict the sample for data construction to firms that patented at least one drug
both before 1990 and during 1990 – 1995.

Figure 6: Knowledge distribution and knowledge-product joint distribution: data versus model

compare the cross-sectional marginal distribution of knowledge and the cross-sectional joint
distribution of knowledge and product (drug) portfolios in the data to those implied by the
model. Second, I estimate model-implied elasticities of innovation outcomes with respect to firm
knowledge and compare them to empirical evidence in Section 3.2.

Knowledge distribution and knowledge-product joint distribution. Figure 6 reports,
from the data, the cross-sectional marginal distribution of knowledge (panel A, blue solid line)
and the joint distribution of knowledge and products, i.e., drugs, (panel B, blue solid line). For
each firm f that had patented at least one drug by 1990, I construct cumulative counts through
1990 of (i) the number of patented drugs (ntotal

f,1990) and (ii) the number of distinct functional groups
used in those drugs (itotal

f,1990). The notations are consistent with those in Section 3.2. I rank firms
by itotal

f,1990; I then plot the cumulative share of aggregate itotal
f,1990 (panel A) and of aggregate ntotal

f,1990

(panel B). The market is concentrated: the top 20% of firms ranked by knowledge account for
56% of the aggregate knowledge stocks and 71% of all patented drugs.

On the model side, natural proxies for (itotal
f,1990, ntotal

f,1990) are firm state variables (if,t, nf,t).
However, the data use cumulative objects that do not subtract for depreciation of knowledge or
creative destruction of products. To ensure comparability, I augment the model simulation to track
cumulative measures of knowledge and products (itotal

f,t , ntotal
f,t ) alongside the states; these measures
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accumulate new ingredients and products without netting out subsequent losses. Because every
firm exits in finite time with probability one in the model30, these cumulative measures remain
bounded, and the joint distribution of (if,t, nf,t, itotal

f,t , ntotal
f,t ) converges to a stationary distribution.

Panels A and B of Figure 6 overlay the model-implied distributions (black dashed lines).
Although the calibration targets only a single moment – the top-20% share of knowledge (marked
in panel A) – the model tracks the full cross-sectional knowledge distribution and knowledge-
product joint distribution well. In the data, the top 20% firms account for 56% of knowledge
and 71% of drugs; in the model, the corresponding shares are 56% and 60%. At the top 10%
firms, the data report 36% of knowledge and 53% of drugs, versus 37% and 40% in the model.
Overall, beyond the single targeted moment, the model reproduces the shape of the knowledge
distribution and captures much of the knowledge-product concentration observed in the data.

Heterogeneous innovation across firms. I next examine, in the model, how firms at
different points of the knowledge distribution innovate differently – both how much they innovate
and which types of innovation they specialize in – and compare these implications to the evidence
in Section 3.2. To mirror the empirical design, I simulate an economy of 50,000 firms for 20
years and divide the simulation into four five-year periods. Along the simulation, I record
(if,t, nf,t, itotal

f,t , ntotal
f,t ) as defined above. For each firm-period, I then construct the same firm-level

outcomes as in the data: the number of newly patented drugs, nnew
f,t , and the number of new

ingredients appearing in those drugs, inew
f,t .

Innovation intensity. I first estimate PPML specifications that relate innovation to knowledge,
paralleling the regressions in Section 3.2. Using the state variable,

E[yf,t|Xf,t] = exp(α + βi ln(1 + if,t) + γt), (5.1)

with yf,t ∈ {nnew
f,t , inew

f,t } and γt denoting period fixed effects. The coefficient of interest βi (subscript
i for “ingredients”) is the elasticity of innovation with respect to knowledge if,t.

The results are reported in Table 6. Columns (1) – (2) show that firms with larger knowledge
stocks are more innovative: a 1% increase in if,t is associated with 1.38% more new drugs (column
1) and 0.92% more new ingredients (column 2) over the next five years. These positive elasticities
reflect ζb > 0 and ζc > 0, i.e., knowledgeable firms are more capable of innovation, and are
qualitatively consistent with evidence in Section 3.2.

Innovation specialization. I next examine composition of innovation. In the data, I decompose
new drugs into novel, across-firm combination, within-firm combination, and refinement. In the

30As shown in Figure 4, the novel R&D rate λb(i) is concave in i, lying everywhere below the depreciation flow
ξi, which is linear in i. Consequently, the knowledge stock follows a birth-death process with negative drift and,
starting from any i ≥ 1, hits i = 0 in finite time almost surely. Once at i = 0, the firm cannot innovate further
(λb(0) = λc(0) = 0), and its product count evolves as a pure death process with per-product hazard µ; thus n also
reaches zero in finite time.
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model, I compute two shares within nnew
f,t : (i) the share that originates from novel innovation,

%novelf,t (corresponding to novel plus across-firm combination in the data); and (ii) the share
from combinatorial innovation, %combf,t (corresponding to within-firm combination in the data).
Because %novelf,t + %combf,t = 1, I estimate the relationship between innovation specialization
and firm knowledge using a fractional logit specification:

E[yf,t|Xf,t] = exp(α + βi ln(1 + if,t) + γt)
1 + exp(α + βi ln(1 + if,t) + γt)

, (5.2)

with yf,t ∈ {%novelf,t, %combf,t} and γt denoting period fixed effects. The coefficient of interest
βi captures how knowledge correlates with specialization. This formulation is equivalent to a
multinomial logit specification with either %novelf,t or %combf,t as the base category.

The results are reported in Table 6. Columns (3) – (4) show that richer knowledge stocks
tilt firm toward combinatorial innovation: the coefficients on ln(1 + if,t) are -0.25 for %novelf,t

(column 3) and 0.25 for %combf,t (column 4). Quantitatively, moving from the median-knowledge
firm to one standard deviation above, an increase of 0.32 in ln(1 + if,t), implies roughly 8%
fewer novel innovations and 8% more combinatorial ones, consistent with a life-cycle pattern in
which firms transition from early knowledge accumulation to later internal recombination. This
pattern is consistent with empirical evidence (see Section 3.2). It arises because in my calibration,

ζc

ϕc−1 > ζb

ϕb−1 : as knowledge accumulates, combinatorial costs decline faster than novel costs.
Control for portfolio size. Columns (5) – (8) of Table 6 add control for firm product portfolio,

ln(1 + nf,t). The knowledge coefficients are essentially unchanged, while the product-portfolio
coefficients are near zero and statistically insignificant across outcomes, echoing the theoretical
result that optimal innovation arrival rates depend on knowledge i but not on the number of
products n. The insignificance is also consistent with evidence reported in Tables 2 and 3. Table
E.19 in the Appendix measures firm knowledge and product portfolio using (ln(if,t), ln(nf,t)) and
show that the results are robust.

State versus cumulative measures. Because the empirical results use cumulative measures of
knowledge and products that do not net out depreciation or creative destruction, I repeat this
estimation using the model’s cumulative counterparts (itotal

f,t , ntotal
f,t ) as regressors.

The results are reported in Table 7. Columns (1) – (2) show that a 1% increase in itotal
f,t is

associated with 0.36% more new drugs and 0.23% more new ingredients; columns (3) – (4) show
a 7% shift from novel to combinatorial innovation. Controlling for the cumulative number of
products ntotal

f,t in columns (5) – (8) leaves the patterns intact; the portfolio coefficients remain
small. The attenuation of coefficients on knowledge from Table 6 to Table 7 is expected for two
reasons: (1) mechanically, if,t ≤ itotal

f,t (strict inequality in most cases), so a given percentage
change in the smaller state variable translates into a larger proportional effect on outcomes; (2)
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if,t directly governs innovation choices in the model, whereas itotal
f,t are correlated with innovation

outcomes only through its (imperfect) correlation with if,t.
Comparison to the data. The estimation results using cumulative measures itotal

f,t and ntotal
f,t

(see Table 7) are directly comparable to empirical results from Section 3.2. Columns (5) – (6)
of Table 7 imply that a 1% increase in cumulative knowledge predicts 0.53% more new drugs
and 0.35% more new ingredients, versus 0.88% and 0.47% in the data (see Table 2). Columns (7)
– (8) imply that moving from the median-knowledge firm to one standard deviation above, an
increase of 0.78 in ln(itotal

f,t ), yields roughly a 7% decrease in novel innovation and a 7% increase
in combinatorial innovation, compared with 11% and 15% empirically31; the differences are
statistically indistinguishable.

In sum, estimation results from the model align well with empirical evidence both qualitatively
and quantitatively: innovation intensity and specialization are driven by knowledge rather
than size, and knowledge accumulation systematically rediects innovation effort toward internal
recombination.

5.3 Contribution of combinatorial innovation

In the model, novel innovation expands a firm’s knowledge stock; combinatorial innovation
then converts that stock into additional products. Without novelty, there is no new knowledge
and, hence, little scope for recombination. In this sense, novelty is the primitive margin, while
recombination scales with the accumulated knowledge stock. I now use the model to quantify
the importance of combinatorial growth. Specifically, I consider a counterfactual economy where
combinatorial innovation becomes prohibitively costly (Ac → ∞), forcing firms to rely exclusively
on novel innovation.

It is tempting to conclude that shutting down recombination would mechanically reduce
aggregate growth. However, in my model, two additional forces operate: a reinforcing force,
without the capability to recombine existing knowledge, the payoff to expanding knowledge
falls, depressing investment in novel innovation; and a countervailing general-equilibrium force,
lower innovation activities reduce equilibrium creative destruction, and longer product lives raise
expected per-product profits, partly restoring incentives for novel innovation and encouraging

31The corresponding empirical results are reported in Appendix Table E.20. Mapping model to data, “novel”
in the baseline model corresponds to either a novel drug or an across-firm combination in the data, while
“combinatorial” in the baseline model corresponds to within-firm combination. Accordingly, I construct three
mutually exclusive shares in the data: (i) novel plus across-firm combination, (ii) within-firm combination, and (iii)
refinement. I then estimate a fractional multinomial logit specification analogous to equations (3.1 – 3.2) using
refinement as the base category. In terms of magnitudes from an analogous experiment in the data: moving from
the median knowledge firm to one standard deviation above, an increase of 1.2 in ln(itotal

f,t ), implies roughly 11%
fewer patented drugs that are classified as novel or across-firm combination (−0.09 × 1.2 ) and 15% more drugs
classified as within-firm combination (0.13 × 1.2).
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Table 6: Model-implied regression coefficients for innovation outcomes: (if,t, nf,t).

(1) (2) (3) (4) (5) (6) (7) (8)

nnew
f,t inew

f,t %novelf,t %combf,t nnew
f,t inew

f,t %novelf,t %combf,t

knowledge, ln(1 + if,t) 1.38 0.92 -0.25 0.25 1.39 0.93 -0.25 0.25
(0.01) (0.01) (0.01) (0.01) (0.01) (0.02) (0.01) (0.01)

product, ln(1 + nf,t) -0.01 -0.01 -0.00 0.00
(0.01) (0.01) (0.00) (0.00)

period fixed effect ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

R2 0.08 0.03 – 0.08 0.03 –
observations 86,818 86,818 50,644 86,818 86,818 50,644

Note: The simulated dataset is constructed to match the empirical dataset in time frame, variable definitions,
and sample structure, but with a larger simulated population of 50,000 firms for improved precision. Columns
(1) – (2) use PPML specification (5.1). Columns (3) – (4) use fractional logit specification (see equation 5.2).
Columns (5) – (6) use PPML specification (5.1) but include the product portfolio size control ln(1 + nf,t).
Columns (7) – (8) use fractional logit specification (5.2) but include the product portfolio size control ln(1+nf,t).
The dependent variables are the number of new drugs patented over the subsequent five-year period for columns
(1) and (5); the number of new ingredients used in those drugs for columns (2) and (6); the fraction of those
drugs being novel for columns (3) and (7); and the fraction of those drugs being combinatorial for columns (4)
and (8). Knowledge ln(1 + if,t) and product portfolio ln(1 + nf,t) are measured as the log-transformations of
firm state variables (i, n).

Table 7: Model-implied regression coefficients for innovation outcomes: (itotal
f,t , ntotal

f,t ).

(1) (2) (3) (4) (5) (6) (7) (8)

nnew
f,t inew

f,t %novelf,t %combf,t nnew
f,t inew

f,t %novelf,t %combf,t

knowledge, ln(itotal
f,t ) 0.36 0.23 -0.07 0.07 0.53 0.35 -0.09 0.09

(0.01) (0.01) (0.00) (0.00) (0.02) (0.02) (0.01) (0.01)
product, ln(ntotal

f,t ) -0.15 -0.10 0.02 -0.02
(0.02) (0.02) (0.00) (0.00)

period fixed effect ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

R2 0.03 0.01 – 0.03 0.01 –
observations 86,818 86,818 50,644 86,818 86,818 50,644

Note: The simulated dataset, specifications, and dependent variable definitions are the same as Table 6.
Knowledge ln(itotal

f,t ) and product portfolio ln(ntotal
f,t ) are cumulative measures of knowledge and products

without netting out subsequent losses from depreciation and creative destruction.

entry.
I report the results in Table 8. In this experiment, the aggregate creative-destruction rate, and

thus growth rate, falls by 30% (from 0.099 to 0.069). The decline is sharper for incumbent-driven
displacement – 41% (from 0.078 = 0.041 + 0.037 to 0.046 = 0.046 + 0) – while entry-driven
displacement rises by 10% (from 0.021 to 0.023), reflecting the improved returns from longer-
lived products. Because, in the baseline, more knowledgeable firms specialize in combinatorial
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Table 8: Counterfactual without within-firm combination (Ac → ∞): equilibrium outcomes

Baseline No recombination ∆ (level) ∆ (%)

Product displacement dynamics
aggregate creative-destruction rate 0.099 0.069 −0.030 −30%
incumbent-driven novel displacement 0.041 0.046 +0.005 +12%
incumbent-driven recomb. displacement 0.037 0 −0.037 −100%
entry-driven displacement 0.021 0.023 +0.002 +10%

Concentration
top 20% (by knowledge) share of products 60% 55% −5% −8%

Note: “No recombination” sets within-firm combination costs prohibitively high (Ac → ∞); all other parameters
are held fixed. I recompute the stationary equilibrium. Displacement dynamics are rates per unit time.
Concentration is the product share held by the top 20% of firms ranked by knowledge. Reported percentage
changes reflect the discussion in the text.

innovation to expand product counts, shutting down recombination hurts them disproportionately.
Market concentration therefore falls: the top 20% of firms by knowledge hold 55% of products in
this experiment, compared with 60% in the baseline.

Combinatorial innovation, i.e. within-firm combination, amplifies the returns to knowledge: it
is a key mechanism linking knowledge accumulation to product proliferation and, in equilibrium, to
market concentration. Removing it weakens this link, reduces overall innovation and displacement,
and shifts activity toward entry rather than incumbent product turnover. In this section, I
quantify the importance of within-firm combination. In the next section, I introduce the full
model that endogenizes across-firm combination and allows me to quantify the importance of full
combinatorial innovation (within- plus across-firm combination).

6 Full Model: Idea Duplication by Coincidence

In Sections 4 – 5, I keep the model parsimonious, focus on the stationary equilibrium, and show
its capability in matching a series of micro-level facts. At this stage, however, the model is silent
on two salient empirical patterns documented in Section 3.1. First, the rising importance of
recombination. Does recombination crowd out novel discoveries and thereby is detrimental to
long-run growth? Or does it instead operate as a powerful engine of growth when other types
of innovation slow down? What is the total contribution of combinatorial growth (across-firm
plus within-firm)? Second, the decline in novelty. The data indicate a slowing expansion of the
knowledge frontier, yet the current model does not specify whether a “new” ingredient is new to
the market or merely new to the focal firm, and thus lacks a well-defined notion of knowledge
frontier. Will the knowledge frontier eventually cease to expand, with consequences for long-run
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growth? Can policy instruments sustain novelty when it becomes scarce?
In this section, I address these aspects by augmenting the baseline model with a single,

pervasive force in innovation: idea duplication by coincidence. When a firm succeeds in novel
innovation, the obtained ingredient may already exist elsewhere in the economy, pioneered earlier
by another firm. The probability of such coincidence rises with the size of the aggregate knowledge
pool. This mechanism is natural and prominent both in pharmaceutical R&D and in research
broadly. The sociology literature coins this phenomenon “multiples” or “multiple discoveries”
and documents its wide presence (e.g. Ogburn and Thomas, 1922; Merton, 1961, 1963; Lamb,
1984).32 Throughout this section, I refer to new ingredients with no prior market appearance
as new-to-market ingredients; they define the knowledge frontier. New ingredients that were
previously pioneered elsewhere are merely new to the firm; I call them new-to-firm ingredients.

This duplication force makes new-to-market ingredients progressively harder to find. Yet
because combinatorial innovation can capitalize on the expanding stock of known ingredients,
the economy still exhibits sustained growth, with equilibrium innovation staying positive and
bounded away from zero. Overall, the model delivers an “unbalanced” growth path with rising
importance of combinatorial growth. The full model provides two further advantages. First, it
introduces theoretical counterparts to the three empirical innovation types – novel, across-firm
combination, and within-firm combination – enabling a clearer analysis of their trade-offs. It
also allows me to quantify the full contribution of combinatorial innovation (across-firm plus
within-firm). Second, the full model reveals a sharp policy trade-off: rewards for novelty generate
a sharp by temporary boost in growth, whereas rewards for combination raise growth persistently
with heterogeneous effects across firms.

6.1 Idea coincidence

The baseline model in Section 4 assumes that novel innovation generates an ingredient that is
new to the focal firm but does not specify whether this ingredient is new to the market. I now
introduce this distinction in a way that largely preserves the analysis in Section 4. The full model
delivers a growth path that is unbalanced – declining novelty alongside rising recombination – so
in this section I index variables by time t.

Idea coincidence. Let It ≥ 0 denote the aggregate measure of distinct ingredients ever
discovered, a continuous aggregate state variable, not a count. When a firm succeeds in novel

32In pharmaceutical research, firms scan common literature and attend common conferences, converging to
similar ideas of drug design. Beyond pharmaceuticals, this coincidence pattern is widespread across innovative
activities. Classic work by Ogburn and Thomas (1922) notes that such coincidence goes beyond famous examples
such as the invention of calculus (Newton versus Leibniz) to “many important scientific discoveries not as well
known.” Similarly, Merton (1961, 1963) emphasize that many discoveries arrive as “multiples,” wherein independent
researchers reach similar results nearly simultaneously or rediscover earlier findings.
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innovation, the accompanying new ingredient coincides with any known ingredient in It with
intensity γ, so the probability that this ingredient is new-to-market (appearing for the first time
in the market) follows

Pr(new-to-market|γ, It) = exp(−γIt).

For all successful novel innovation across firms and over time, I assume γ follows a Gamma
distribution with shape parameter θ and unit scale parameter, γ ∼ Gamma(θ, 1). Integrating
over γ yields

π(It) ≡ Pr(new-to-market|It) = (1 + It)−θ. (6.1)

Equation (6.1) has an intuitive interpretation: as the aggregate knowledge pool expands, a “new”
idea becomes likelier to coincide with existing knowledge, making truly new-to-market discoveries
increasingly rare while increasing the chance of rediscovering an ingredient pioneered by other
firms.

To fix language, I retain the terms “novel innovation” (arrival rate λb) and “combinatorial
innovation” (arrival rate λc) from Section 4. A success from novel innovation is a novel success.
The resulting ingredient is either new-to-market, in which case the product is a novel product, or
new-to-firm (previously used by other firms but not by the focal firm), in which case the product
is an across-firm combination. By contrast, a success from combinatorial innovation is always a
within-firm combination that uses only ingredients already in the firm’s own knowledge stock.

Moreover, I assume that an across-firm combination earns flow profits π̄ only with probability
p; with probability 1 − p, the new product is blocked by the pioneering firm of the new ingredient
and earns zero profits. Thus, although a new-to-firm success always adds an ingredient to the
firm’s knowledge stock, it translates into a new product only with probability p. This assumption
is consistent with industry facts: when a promising functional group is identified, pioneering firms
often file families of composition-of-matter patents with broad claims to deter follow-on entry and
raise imitation costs (e.g., Cohen, Nelson and Walsh, 2000; Sternitzke, 2013; Wagner, Sternitzke
and Walter, 2022). The possible innovation outcomes and the associated state transitions are
summarized in Figure 7.

Note that when p = 1, i.e., when novel products and across-firm combinations yield the same
profits, It ceases to matter at the firm level: firms are indifferent to whether a new ingredient
is new-to-market or merely new-to-firm. In this special case, the firm problem collapses to the
analysis in Section 4 and the model is stationary. The economy still exhibits declining novelty
and rising recombination through π(It), but there is no meaningful transition in the rate of entry,
creative destruction or growth. Below, I focus on the empirically relevant case p < 1.
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Figure 7: Innovation type illustration

Equilibrium. I now characterize the Markov perfect equilibria of the economy where firm
strategies depend on the time-series of aggregate knowledge pool (It)t and creative destruction
rate (µt)t.

Equilibrium definition. An equilibrium of the economy consists of incumbent innovation
policy functions (λt,b, λt,c), entry rate ηt, creative destruction rate µt, ingredient depreciation
rate ξ, interest rate r, aggregate distinct-ingredient stock It, and a joint distribution of firms
Φt(i, n) over states (i, n), such that (i) incumbents choose (λt,b, λt,c) optimally (equation 6.2);
(ii) entrants choose ηt optimally (equation 6.5); (iii) the total measure of products equals one∑

i

∑
n nΦt(i, n) = 1; (iv) It evolves according to İt = π(It)

(
ηt +

∫
(i,n) λt,b(i)dΦt(i, n)

)
, since

new-to-market ingredients arise from novel innovation by either entrants or incumbents; (v) the
distribution Φt(i, n) evolves according to its law of motion (equation 6.6).

Incumbent firm problem. Consider a firm with i ingredients and n products. The firm takes
[r, ξ, (It)t, (µt)t] as given and chooses R&D intensities for novel and combinatorial innovation
(λb, λc) to maximize the present value of profits:

r Vt(i, n) = max
λb, λc

{
π̄ n︸︷︷︸

flow profits

+ V̇t(i, n)︸ ︷︷ ︸
capital gain

− Ab

ϕb

i−ζbλϕb
b − Ac

ϕc

i−ζcλϕc
c︸ ︷︷ ︸

R&D costs

+ λb

[
kt Vt(i+1, n+1) + (1 − kt) Vt(i+1, n) − Vt(i, n)

]
︸ ︷︷ ︸

novel R&D → novel + across-firm comb. + new product blocked

+ λc

[
Vt(i, n+1) − Vt(i, n)

]
︸ ︷︷ ︸
comb. R&D → within-firm comb.

+ ξ i
[
Vt(i−1, n) − Vt(i, n)

]
︸ ︷︷ ︸

ingredient depreciation

+ µt n
[
Vt(i, n−1) − Vt(i, n)

]
︸ ︷︷ ︸

creative destruction

}
. (6.2)

The first line on the right-hand side collects the firm’s instantaneous flow payoff net of innovation
costs: each product yields flow profit π̄; the term V̇t(i, n) is the capital gain from moving through
time; and the innovation costs depend on the firm’s knowledge i and the chosen arrival rates (λb, λc).
The second and third lines capture the expected value changes from the firm’s Poisson events.
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A novel success arrives at rate λb. With probability π(It), the new ingredient is new to market,
expanding both the ingredient set and the product portfolio (i, n) → (i + 1, n + 1). The product is
novel. With probability 1 − π(It), the new ingredient is new to firm; conditional on this, the firm
obtains a product, an across-firm combination, with probability p (so (i, n) → (i+1, n+1)) and the
product is blocked with probability 1−p (so (i, n) → (i+1, n)). Thus, the probability of obtaining
a profit-generating product from a novel success is kt = π(It) + (1 − π(It))p. Combinatorial
innovation arrives at rate λc and adds a product, a within-firm combination, using existing
ingredients, (i, n) → (i, n + 1). The remaining terms reflect losses in value: ingredients depreciate
at rate ξ, reducing the knowledge stock (i, n) → (i − 1, n); and creative destruction occurs at rate
µt per product, displacing one product from the portfolio (i, n) → (i, n − 1). Note that creative
destruction does not destroy the firm’s knowledge stock: the number of ingredients i is unaffected.

Value function Vt(i, n) preserves the feature of being linear in n and its clear interpretation.
Because R&D costs depend only on knowledge i but not on the product count n, the marginal
value of a product is independent of (i, n) and equals the present value of its profit stream net of
expected loss from creative destruction. The following proposition formalizes this observation

Proposition 3. Consider the setup above. The value function is linear in the number of products:

Vt(i, n) = at(i) + bt n, where rbt = π̄ + ḃt − µtbt (6.3)

and at(i) satisfies
rat(i) − ȧt(i) = ϕb − 1

ϕb

(Abi
−ζb)

−1
ϕb−1 (at(i + 1) − at(i) + ktbt)

ϕb
ϕb−1

+ ϕc − 1
ϕc

(Aci
−ζc)

−1
ϕc−1 b

ϕc
ϕc−1
t

+ ξi(at(i − 1) − at(i)) (6.4)

The corresponding optimal innovation intensities λt,b and λt,c are:

λt,b(i) =
(

at(i + 1) − at(i) + ktbt

Abi−ζb

) 1
ϕb−1

, λt,c(i) =
(

bt

Aci−ζc

) 1
ϕc−1

,

which depend solely on i and are independent of n.

Proof. See Appendix C. □

Proposition 3 shows that the value function is separable into two components: (i) at(i), the
option value of the current knowledge stock for generating future innovations; and (ii) bt n, the
annuity value of the current product portfolio. This mirrors Proposition 1, except that, because
the environment is nonstationary, both at and bt vary over t. Three implications from the baseline
model carry over: (1) the innovation policy functions (λt,b, λt,b) depend only on firm knowledge i,
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but not on product portfolio n once i is given; (2) combinatorial successes (from λt,c) are less
valuable than novel successes (from λt,b); and (3) startups can command positive market value
even without revenue-generating products or patents, since Vt(i, 0) = at(i) > 0.

Entrant problem. At time t, entrants choose novel R&D intensity η and solve

max
η

−Ae

ϕb

ηϕb︸ ︷︷ ︸
innovation costs

+ η [ktVt(1, 1) + (1 − kt)Vt(1, 0) − Vt(0, 0)]︸ ︷︷ ︸
expected gains from entry

, (6.5)

where the first term is the flow cost of novel innovation and the second term is the expected
surplus from a novel success: with probability kt = π(It) + (1 − π(It))p the entrant obtains both
an ingredient and a product, otherwise only an ingredient.

Firm distribution. The cross-sectional distribution of firms over knowledge and products
is endogenous and determined in equilibrium. Denote by Φt(i, n) the mass of firms at time t

with knowledge i and product count n so that ∑∞
i=0

∑∞
n=0 nΦt(i, n) = 1 and that Φt(0, 0) = 0.

Given firms’ innovation policies, creative destruction, and the exogenous processes for ingredient
depreciation, Φt(i, n) evolves according to the Kolmogorov forward equation:

Φ̇t(i, n) = kt λt,b(i − 1) Φt(i − 1, n − 1) 1{i ≥ 1, n ≥ 1}︸ ︷︷ ︸
novel R&D → novel + across-firm comb.

+ (1 − kt) λt,b(i − 1) Φt(i − 1, n) 1{i ≥ 1}︸ ︷︷ ︸
novel R&D → new product blocked

+ λt,c(i) Φt(i, n − 1) 1{n ≥ 1}︸ ︷︷ ︸
comb. R&D → within-firm comb.

+ ξ (i + 1) Φt(i + 1, n)︸ ︷︷ ︸
ingredient depreciation

+ µt (n + 1) Φt(i, n + 1)︸ ︷︷ ︸
creative destruction

+ kt ηt 1{i = 1, n = 1} + (1 − kt) ηt 1{i = 1, n = 0}︸ ︷︷ ︸
entry

−
[
λt,b(i) + λt,c(i) + ξ i + µt n

]
Φt(i, n)︸ ︷︷ ︸

outflows

.

(6.6)

Mass arrives at state (i, n) through five channels: (i) novel R&D with a product (either new-
to-market with prob. π(It) or new-to-firm and unblocked with prob. (1 − π(It))p) moves firms
from (i − 1, n − 1) to (i, n) at rate kt λt,b(i − 1); (ii) novel R&D, new-to-firm but blocked (prob.
(1 − π(It))(1 − p) = 1 − kt) adds an ingredient but no product, moving (i − 1, n)→(i, n) at rate
(1 − kt) λt,b(i − 1). (iii) within-firm combination adds a product using existing ingredients, moving
(i, n − 1)→(i, n) at rate λt,c(i); (iv) ingredient depreciation reduces knowledge, so firms flow from
(i + 1, n) to (i, n) at rate ξ(i + 1); and (v) creative destruction of a product moves firms from
(i, n + 1) to (i, n) at rate µt(n + 1). Entry places mass at (1, 1) with probability kt and at (1, 0)
with probability 1 − kt at rate ηt. The final bracket subtracts outflows from (i, n) due to the
firm’s own novel and combinatorial successes, ingredient depreciation, and product destruction.
Indicator functions ensure feasibility of the source states.

Numerical algorithm. The economy features an unbalanced transition in which the composition
of innovation, entry, and aggregate creative destruction evolves over time. I compute the transition
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with a standard backward-forward (HJB-KFE) routine, following the spirit of Achdou et al. (2022)
and Buera and Shin (2013). There are four steps: (1) solve the initial and the terminal stationary
equilibrium, which anchor the transition; (2) guess aggregate paths by posting a time path for
(It, µt) along the transition; (3) given the guess, solve the value problem backward to obtain
policies; then, starting from the initial steady state, simulate the distribution forward to the
terminal date; (4) construct new (It, µt)t from the simulated path, damp, and iterate until
convergence. This procedure delivers a time path for policies, distributions, and aggregates
consistent with the non-stationary environment.

Unlike standard transition exercises that start from a baseline stationary distribution and
add a shock, my environment has no such “pre-shock” steady state: the aggregate knowledge
stock It is ever increasing and π(It) is ever decreasing. I therefore take a stand on the initial
condition. Specifically, I choose a level I0 (calibrated to an empirical moment) and compute the
stationary equilibrium that would obtain if I were held fixed at I0; I take the resulting stationary
distribution as the initial cross-section. Along the transition, however, It is allowed to rise from
I0 and accumulate over time.

On the terminal side, the model has a well-defined limit: as t → ∞, It → ∞. Hence the new
steady state corresponds to π(It) → 0: every novel success is new-to-firm (never new-to-market),
and the probability of obtaining a profit-generating product from a novel success converges to
kt = p.33

6.2 Calibration and quantitative analysis

I now apply the full model to microdata from the anti-allergic drug market. The model reproduces
the macro patterns of declining novelty and rising recombination and highlights them as a
feature of growth: as the knowledge pool expands, new-to-market ingredients become harder to
find, so innovation dynamics drift down. Simultaneously, abundant combinatorial opportunities
sustains progress and keeps the long-run growth rate bounded away from zero. I document these
transitional dynamics and use the model to quantify the contribution of combinatorial growth.
Crucially, the complete framework allows me to measure the full impact of recombination – not
only within-firm combination but also across-firm combination.

Calibration. To make results consistent and comparable with the baseline model, I fix the
parameters shared with the baseline model and calibrate only the new ones. Three parameters
are new: (i) the stock of distinct ingredients in the initial stationary equilibrium, I0; (ii) the shape
parameter of Gamma distribution θ governing π(It) = (1 + It)−θ; and (iii) the probability p of a

33Proof sketch: if It converged to some finite Ī, then π(It) → π(Ī) > 0. With positive novel arrival rate
λt,b(i) > 0, aggregate novel successes would continue to add new-to-market ingredients at a rate non-diminishing
to zero, implying further non-diminishing growth in It – a contradiction.
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new-to-firm ingredient yielding a profit-generating (unblocked) product. These parameters pin
down the model-implied dynamics of innovation composition between “novel” and across-firm
combinations. In the model, the share of novel within novel + across-firm combination at time t

is

%novelt
%novelt + %combacross

t

= π(It)
π(It) + (1 − π(It))p

,

where π(It) is the probability that a novel draw is new-to-market, and (1−π(It))p is the probability
it is new-to-firm and unblocked (thus generating an across-firm combination). The parameter
θ also governs the growth dynamics of It by determining how quickly genuinely new-to-market
ingredients become harder to find. Accordingly, I calibrate (I0, θ, p) to match three moments:
(1) the above novel/(novel+combacross) ratio in 1990 (initial cross-section); (2) the same ratio in
2010 as implied by the 20-year model transition; and (3) the overall decline in the number of new
ingredients over time.

Figure 8 shows that the full model reproduces the empirical targets closely. Panel A reports
the share of novel products as of novel products and across-firm combinations. Year 0 on the
x-axis represents 1990 in the data. The data (blue solid) drifts downward from 1990 to 2010,
indicating waning novelty; the model path (black dashed) closely tracks this 20-year transition.
Panel B plots the market-level introduction of new (new-to-market) ingredients (normalized to
1990 = 1); the model captures the secular decline in discoveries of new-to-market ingredients.
Together, these panels confirm that calibrating (I0, θ, p) is sufficient to match the shift from
novelty to across-firm combination and the decline in novelty over time.

Transitional dynamics. Figure 9 displays the 200-year transition implied by the calibrated
model. Panel A shows that the cumulative stock of ever-discovered ingredients It rises monotoni-
cally. As the knowledge base expands, the probability that a novel success yields a new-to-market
ingredient falls (panel B), so the flow of novel discoveries declines over time (panel C).

Panel D shows that the creative destruction rate µt declines over time and converges to its
new stationary level. Two forces are at work. First, as π(It) decreases, genuinely novel products
become less likely, which reduces incentives for novel innovation and lowers µt. Second, a lower
µt lengthens product lifetimes and raises product profits; this general-equilibrium effect induces
more R&D effort on the margin and partially offsets the fall in µt. In the long-run equilibrium, as
It → ∞ and π(It) → 0, the creative destruction rate converges. Consistent with this mechanism,
panel E shows a compositional shift: genuinely novel products become increasingly rare, the share
of across-firm combinations rises, and the share of within-firm combinations increases modestly
due to the general equilibrium effect. The entry rate ηt declines gradually along the transition
and approaches its new steady state (panel F).

Overall, the model implies: growing knowledge makes genuine breakthroughs scarce and tilts
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Figure 8: Calibration fit: novelty share and decline in new ingredients (data versus model)

innovation toward recombination. In the long run, novelty fades, but the expanding opportunities
of recombination sustain innovation and growth.

Contribution of combinatorial innovation. In Section 5.3, I use the baseline model to
quantify the contribution of within-firm combination to aggregate innovation. The full model
separates novel innovation from across-firm combination, allowing me to evaluate the total
contribution of recombination (within-firm + across-firm) to aggregate dynamics. Specifically, I
consider a counterfactual in which both types of combination become prohibitively costly (p → 0
and Ac → ∞), forcing firms to rely exclusively on genuine novelty.

Figure 10 compares this no-combination counterfactual (black dashed line) with the baseline
calibration (blue solid line). In panel A, eliminating recombination triggers a sharp drop in
aggregate creative destruction µt (e.g., from 0.093 to 0.017 at t = 0). This is immediate because,
in the baseline, roughly 80% of new products at t = 0 comes from recombinations; removing
them greatly dampens innovation dynamics. Over time, as the knowledge pool expands and π(It)
declines, genuinely novel products become extremely rare, so ηt → 0 (panel B) and µt → 0 (panel
A). Panel C examines market concentration, measured as the share of cumulative products ntotal

f,t

held by the top 20% of firms ranked by knowledge itotal
f,t . The baseline series is fairly stable. Under

the no-combination counterfactual, concentration is hump-shaped: it rises early as low-knowledge
firms exit, while high-knowledge incumbents can coast on their larger existing portfolios; later,
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Figure 9: Transitional dynamics.

as µt → 0 and entry dries up, even leaders cannot renew their product sets, portfolios gradually
depreciate, and concentration falls toward a lower long-run level.

Taken together, the figure shows that combinatorial innovation is crucial for sustaining creative
destruction, supporting entry, and – through continued turnover – maintaining the observed level
of concentration.

6.3 Heterogeneous policy implications

Designing public policies to encourage innovation and promote technological and economic growth
is a central policy concern. In pharmaceuticals, for example, the FDA encourages novelty by
granting drugs that contain a new molecular entity (NME) a longer exclusivity period, thereby
extending their market life.

In this section, I use the full model to evaluate how various innovation policies affect aggregate
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Figure 10: Contribution of combinatorial innovation.

entry and growth, and to quantify their heterogeneous impacts across firms. Specifically, I
evaluate three policies that aim to correct under-investment in R&D: fixed cash prizes awarded
to firms that achieve (i) a novel invention, (ii) an across-firm combination, or (iii) a within-firm
combination.34 I label these policies $novel, $combacross, and $combwithin. Rather than solving
the social planner’s problem, I fix a common government budget across the three policies and
compare their implications. For comparability with the baseline in Section 6.2, I keep the initial
firm distribution unchanged and vary only the policy along the transition.

I keep the government budget at unity, interpreted as the total profits of all products net of
production costs for a year. For each policy, I solve for the fixed cash prize s so that the total
discounted prize payout equals unity. For example, for policy $novel, I solve

∫ ∞

t=0
exp(−rt)

[
s × π(It)

(
ηt +

∫
(i,n)

λt,b(i)dΦt(i, n)
)]

dt = 1,

where the left-hand side is the present value of expected prize payments under policy $novel. At
time t, total novel innovation intensity is ηt +

∫
(i,n) λt,b(i)dΦt(i, n); each success yields a novel

product with probability π(It), and each novel product is rewarded s. Prize magnitudes reflect
relative frequencies of successes: novel products are rare (thus s = 5), across-firm combinations
are less frequent than within-firm combinations in early years (thus s = 1 versus s = 0.6).

34The extension in Appendix Section B clarifies why such policies are of interest. With the additional innovation
step-size structure, the extended model features a standard “standing on giants’ shoulders” force: the private value
of an innovation does not internalize the option value it creates for future innovators, so equilibrium innovation
intensity can be inefficiently low relative to the social optimum. Absent this force, the model unambiguously
features inefficiently high innovation: the innovating firm does not internalize the business-stealing loss it imposes
on others, so private value exceeds social value.
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equals that budget.

Figure 11: Value changes across firms: before and after policy.

Figure 11 reports the long-run percentage change in firm value under each policy relative to
baseline, Vpolicy(i, n)/Vbaseline(i, n) − 1, across firm state (i, n). Values are evaluated in the new
stationary equilibrium reached in the long run, i.e., in the limiting economy where the aggregate
ingredient stock is large (It → ∞). Panel A focuses on policy $novel. Value changes are identically
zero. In the limiting stationary equilibrium π(It) = 0, novel product never appears, so the prize is
never paid and the policy is neutral. Panel B examines policy $combacross. The prize for across-
firm combinations induces adoption of external ingredients through novel innovation. Gains are
concentrated among low-knowledge firms (especially with small n), who can climb the knowledge
ladder by importing others’ ingredients, while the heightened creative destruction redistributes
surplus away from high-knowledge incumbents, who experience value losses. Panel C shows that
policy $combwithin, by rewarding internal combinations, primarily benefits high-knowledge firms,
especially those with relatively few products (large i, small n), because they hold many internal
combinatorial opportunities to activate and can translate knowledge into products quickly. Firms
with little knowledge have few internal ingredients to exploit and gain little (or may lose slightly
via intensified competition).

Overall, the three policies have starkly different distributional effects: $novel is long-run
neutral, $combacross shifts value toward knowledge-poor firms by accelerating diffusion and catch-
up, and $combwithin shifts value toward knowledge-rich firms by enhancing returns to internal
recombination.

Figure 12 plots the transition path under each policy against the baseline. Policy $novel
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Figure 12: Entry and creative destruction implied by different policy scenarios.

(black dashed line) offers the highest reward per success. It triggers an immediate jump in entry
rate (panel A) and, through heightened competition from entrants, a short-run rise in creative
destruction (panel B). In the long run, however, both ηt and µt drift back to baseline because the
probability of genuine novelty vanishes (π(It) → 0), so the prize is rarely paid and does not alter
steady-state dynamics. Policy $combacross (red dash-dotted line) provides a moderate reward
and thus produces a moderate increase in entry and a smaller rise in creative destruction in the
short run. Knowledge-poor firms respond by importing external ingredients, while knowledge-rich
incumbents (specialized in internal recombination) react less. Both ηt and µt converge to levels
above baseline in the long run. Policy $combwithin (green dotted line) yields little change in entry
– entrants arrive via novel innovation and are not directly rewarded – but it materially raises
creative destruction from t = 0 because knowledge-rich incumbents monetize numerous internal
recombinations. Creative destruction also settles above baseline in the new steady state.

Taken together, the policies trade off short-run stimulus against long-run impact and have
heterogeneous effects across firms with differing knowledge stocks. Rewarding true novelty
generates the largest short-run boost but cannot lift long-run growth. By contrast, $combacross

raises long-run innovation mainly by helping knowledge-poor firms climb the knowledge ladder,
whereas $combwithin does so by amplifying the returns to recombination among knowledge-rich
firms with abundant internal opportunities.

These implications map directly onto policy instruments that differentially support basic
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versus applied research and indicate that the optimal mix depends on the policymaker’s prioritized
time horizon and tolerance for market concentration.

7 Conclusion

New ideas often arise by recombining existing ones. Do such recombinations slow or sustain
economic growth? While recent theory formalizes the growth implications of recombination, direct
evidence on its empirical relevance remains scarce.

This paper measures combinatorial growth and evaluates its importance empirically and in a
quantitative model. I focus on the pharmaceutical industry, where the novelty-recombination
distinction is transparent. I use a chemistry-based measure to decompose each drug into its
constituent functional groups, discrete chemical building blocks that shape its properties. This
approach applies to all small-molecule drugs, which account for 75% of drugs approved by the
FDA’s Center for Drug Evaluation and Research since 2000. This setting is suited to studying
recombination: functional groups are standard chemical concepts, their presence/absence in a
drug is discrete and observable, data are rich and longitudinal, and the drug discovery process is
inherently combinatorial.

Focusing on anti-allergic drugs, I document three patterns. First, recombination is more
prevalent than novelty. From 1990 – 2010, 79% of new drugs are recombinations of existing
functional groups, while 13% contain new functional groups; novelty declines as recombination
rises. Second, firms with less accumulated knowledge, measured as fewer distinct functional
groups in their patented drugs, tend to develop drugs by adopting new functional groups, while
more knowledgeable firms recombine their used functional groups. This points to a firm life cycle:
early-stage knowledge accumulation to later-stage internal recombination. Third, conditional on
clinical trial entry, recombinations are less valuable than novel innovation.

Motivated by the documented empirical patterns, I introduce the distinction between knowledge
stock and product portfolio into Klette and Kortum (2004). Novel innovation builds knowledge,
while combinatorial innovation deploys knowledge to create new products. These two margins
of innovation are distinct yet connected, channeling growth through two processes: knowledge
generation and knowledge application. I calibrate this model to the microdata from anti-allergic
market. Despite its parsimony, the model reproduces untargeted empirical patterns in the joint
distribution of knowledge and products, and in firms’ innovation intensity and specialization
across the knowledge distribution. The model attributes 30% of aggregate creative destruction
and growth to within-firm combination.

Speaking to the macro patterns of declining novelty and rising recombination, I further
introduce knowledge duplication into the model: as the aggregate knowledge stock expands, a “new”

50



idea increasingly overlaps with existing knowledge, making genuine novelty rarer while expanding
the scope for recombination. The full model generates declining novelty, rising recombination and
sustained growth driven by unlimited combinatorial opportunities. Recombination (within-firm
and across-firm) can account for more than 80% of aggregate growth rate. Policy counterfactuals
reveal heterogeneous effects. Rewards for novelty deliver the largest short-run boost to entry and
competition but do not raise long-run growth because novelty becomes progressively rare. Rewards
for combinations raise the long-run growth rate, with heterogeneous effects across firms with
differing knowledge stocks: rewards for across-firm combination benefit less-knowledgeable firms
and reduce concentration, while rewards for within-firm combination benefit more-knowledgeable
firms and increase concentration.
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Appendix

A Identification of Functional Groups

I identify functional groups (FGs) using the algorithm of Ertl (2017), which proceeds by (i)
marking atoms that constitute chemically functional moieties, (ii) merging connected marked
atoms into single FG, and (iii) recording the immediate carbon environment of each FG (aliphatic
versus aromatic). I follow a Python implementation via the RDKit cheminformatics toolkit (Hall
and Godin, 2017) that does not apply the optional generalization step of Ertl (2017).

A.1 Algorithm (Ertl, 2017)

(i) Mark all heteroatoms, i.e., any atom other than carbon and hydrogen.

(ii) Mark carbon atoms that are part of functional connectivity:

(a) any carbon atom connected to any heteroatom by non-aromatic double or triple bond
(C=X or C≡X, with X being heteroatom),

(b) any carbon in a non-aromatic double or triple bond (C=C or C≡C),

(c) acetal carbons: sp3 carbons bonded to ≥ 2 atoms from {O, N, S} where those
heteroatoms only have single bonds,

(d) any carbon atom as part of oxirane, aziridine and thiirane rings; these rings have high
reactivity and are thus traditionally considered to be functional groups.

(iii) Merge connected marked atoms into a single FG.

(iv) For each FG, attach any directly bonded unmarked carbon atoms as its environment; these
carbons are not part of the FG itself.

B Model Extension: Link Creative Destruction to Growth

This appendix embeds a minimal macro block (consumer, final-good aggregator, product market
Bertrand competition) into the baseline model in Section 4. Doing so makes the rate of creative
destruction implied by firms’ innovation decisions map directly into aggregate growth. The
extended model yields a balanced growth path (BGP) in which firm innovation policy functions
are constant over time while firm value, aggregate product quality, and wage rate grow over time
at a common exponential rate.
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B.1 Environment and Demand

Time and varieties. Continuous time t ≥ 0. A unit mass of differentiated product lines
indexed by i ∈ [0, 1].

Household. A representative household has preferences

U =
∫ ∞

0
e−ρt ln Ct dt, ρ > 0, (B.1)

owns all firms, supplies one unit of labor inelastically, and trades a risk-free bond at rate rt. The
Euler equation is

Ċt/Ct = rt − ρ. (B.2)

Final-good aggregator. The final good aggregates line outputs {yi,t} via a log aggregator:

ln Yt =
∫ 1

0
ln yi,t di, (B.3)

with the final good as numeraire (price normalized to 1). Standard demand under (B.3) equalizes
revenue across lines:

pi,t yi,t = Yt for all i. (B.4)

B.2 Production, Pricing, and Wages

Technology in each line. The leader in line i produces with linear technology

yi,t = qi,t ℓi,t, (B.5)

where qi,t is the line-specific leader quality and ℓi,t is labor hired in that line.

Quality ladder and Bertrand pricing. Competition is Bertrand on a quality ladder with
common step size γ > 1.35 The leader’s quality is γ times the follower’s, implying a constant
markup γ. With wage wt, the leader’s price is

pi,t = wt

qi,t

· γ. (B.6)

35It is straightforward to allow heterogeneous step sizes, e.g., novel innovations with step size γb and combinatorial
γc. This extension does not change the key implication: the growth rate equals the creative-destruction rate times
a constant, namely a weighted average of (γb, γc). For simplicity, I abstract from this heterogeneity.
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Per-line allocations and profits. Using (B.4) – (B.6),

yi,t = Yt

pi,t

= Yt qi,t

γ wt

, ℓi,t = yi,t

qi,t

= Yt

γ wt

. (B.7)

Per-line operating profit is independent of i:

πi,t =
(
pi,t − wt/qi,t

)
yi,t =

(
1 − 1

γ

)
Yt. (B.8)

Aggregate quality and wage–quality link. Define the geometric-mean quality

ln Qt ≡
∫ 1

0
ln qi,t di. (B.9)

From (B.3) and (B.7),

ln Yt =
∫ 1

0
ln qi,t di + ln

(
Yt

γwt

)
= ln Qt + ln

(
Yt

γwt

)
,

which implies the wage–quality link
wt = Qt

γ
. (B.10)

Production labor and output. Total production labor is

LP
t =

∫ 1

0
ℓi,t di = Yt

γ wt

, (B.11)

hence
Yt = γ wt LP

t = Qt LP
t . (B.12)

Therefore, the output growth rate decomposes as

gY,t ≡ Ẏt

Yt

= gQ,t + gLP ,t. (B.13)

B.3 Innovation and Creative Destruction

Step size and improvements. An improvement event in line i replaces the incumbent leader
and multiplies quality by γ:

q′
i,t = γ qi,t, γ > 1. (B.14)

Firm states and profits. A firm’s state is (i, n) where i is knowledge/ingredient stock and
n is the number of product lines it currently leads. Using (B.8) and (B.12), per-line operating
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profit is
πt ≡

(
1 − 1

γ

)
Yt =

(
1 − 1

γ

)
Qt LP

t . (B.15)

A firm with n products earns πt n.

R&D technologies and research labor. Innovation uses labor as the sole input. An incumbent
in state (i, n) chooses Poisson arrival rate λb for novel innovation and λc for combinatorial
innovation by hiring research workers:

Novel: ℓb(i, λb) ≡ Ab

ϕb

λϕb
b i−ζb , ϕb > 1, ζb > 0, (B.16)

Combinatorial: ℓc(i, λc) ≡ Ac

ϕc

λϕc
c i−ζc , ϕc > 1, ζc > 0. (B.17)

The corresponding flow costs are wt ℓb(i, λb) and wt ℓc(i, λc), respectively. A combinatorial success
adds a product, (i, n) → (i, n + 1). A novel success raises knowledge and adds a product,
(i, n)→(i+1, n+1).

There is a unit continuum of potential entrants that undertake novel innovation with arrival
rate ηt, hiring

ℓe(ηt) ≡ Ae

ϕb

ηϕb
t , (B.18)

at flow cost wt ℓe(ηt). Aggregate research labor LR
t sums innovation labor hired by incumbents

and entrants, integrating over firm states.

Knowledge depreciation and product creative destruction. Let ξ denote the exogenous
per-ingredient depreciation rate and µ denote the endogenous per-line destruction rate implied
by aggregate innovation.

B.4 Firm problem

Incumbent HJB. Let Vt(i, n) denote the value of an incumbent with knowledge i ∈ N0 and
product count n ∈ N0. Given the flow profit πt per product in (B.15), the R&D costs in (??)–(??),
knowledge depreciation at rate ξ per ingredient, and product creative destruction at rate µ per
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product, the HJB is

rt Vt(i, n) = max
λb,λc

{
πt n︸︷︷︸

flow profits

+ V̇t(i, n)︸ ︷︷ ︸
capital gain

− wt

[
Ab

ϕb

λϕb
b i−ζb + Ac

ϕc

λϕc
c i−ζc

]
︸ ︷︷ ︸

R&D costs

(B.19)

+ λb

[
Vt(i + 1, n + 1) − Vt(i, n)

]
︸ ︷︷ ︸

novel innovation

+ λc

[
Vt(i, n + 1) − Vt(i, n)

]
︸ ︷︷ ︸

combinatorial innovation

− ξi
[
Vt(i, n) − Vt(i − 1, n)

]
︸ ︷︷ ︸

ingredient depreciation

− µtn
[
Vt(i, n) − Vt(i, n − 1)

]
︸ ︷︷ ︸

creative destruction

}
.

The first line on the right-hand side collects the firm’s instantaneous flow payoff net of innovation
costs: each product yields flow profit πt; the term V̇t(i, n) is the capital gain from moving through
time; and the innovation costs depend on firm’s knowledge i, the chosen arrival rates (λb, λc), and
wage wt. The second and third lines capture the expected value changes from the firm’s Poisson
events. The second line reflects the expected gains from successful innovation: novel innovation, at
rate λb, expands both the ingredient set and the product portfolio, and combinatorial innovation,
at rate λc, adds a product using existing ingredients. The third line captures expected losses in
firm value. Ingredients depreciate at a constant Poisson rate ξ, reducing the firm’s capacity for
future innovation, while creative destruction occurs at Poisson rate µt per product, displacing
one product from the firm’s portfolio.

Entrant problem. Entrants choose novel R&D intensity ηt and solve

max
η

−Ae

ϕb

ηϕbwt︸ ︷︷ ︸
innovation costs

+ η [Vt(1, 1) − Vt(0, 0)]︸ ︷︷ ︸
expected gains from entry

. (B.20)

The FOC (if ηt > 0) is

ηt =
(

Vt(1, 1) − Vt(0, 0)
Aewt

) 1
ϕb−1

(B.21)

B.5 Balanced Growth Path

I now restrict attention to the balanced-growth paths (BGP) of this economy, defined as paths
along which all level variables grow at constant rate and firm distribution is stationary.

Balanced growth path definition A balanced growth path (BGP) consists of allocations of
aggregate variables (Yt, Qt, LP

t , LR
t , µt, rt, wt), household choices (Ct, yi,t), firm choices (λb,t, λc,t, ηt),

and cross-sectional firm distribution Φt(i, n), such that: (i) aggregate variables grow at a constant
rate, (ii) consumers choose optimally to maximize utility, (iii) firms choose optimally to maximize
profits, (iv) all markets clear, and (v) the cross-sectional distribution of firms is stationary.
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I now characterize the BGP. Given the Euler equation (B.2) and constant growth of Ct, the
interest rate rt must be constant on a BGP. Because production labor LP

t and research labor LR
t

add up to the unit aggregate labor endowment, it must be the case that (LP
t , LR

t ) are constant,
i.e., (LP , LR). I conjecture that µt is constant over time (µt = µ, ∀t) and verify this guess.

Incumbent value and policy functions. On a BGP, conjecture that firm value is linear in
the product count and scales with aggregate quality,

Vt(i, n) = Qt

[
a(i) + b n

]
, V̇t(i, n) = gQ Vt(i, n), (B.22)

with a(i) and b time invariant. Substituting (B.22) into the HJB (B.19), using

Vt(i, n+1)−Vt(i, n) = Qtb, Vt(i+1, n+1)−Vt(i, n) = Qt

[
a(i+1)−a(i) + b

]
,

Vt(i, n)−Vt(i−1, n) = Qt

[
a(i)−a(i−1)

]
, Vt(i, n)−Vt(i, n−1) = Qtb,

together with πt = π̄ Qt where π̄ ≡ (1 − 1/γ)LP and wt = Qt/γ, and then dividing both sides by
Qt, yields the objective inside the maximization in (B.19) as

J (i, n; λb, λc) = π̄ n + gQ

[
a(i) + bn

]
− 1

γ

[
Ab

ϕb

λϕb
b i−ζb + Ac

ϕc

λϕc
c i−ζc

]

+ λb

{
a(i+1) − a(i) + b

}
︸ ︷︷ ︸

≡ ∆b(i)

+λc b︸︷︷︸
≡ ∆c

− ξi
{

a(i) − a(i−1)
}

− µn b. (B.23)

Maximization over λb, λc. Taking first-order conditions of J with respect to λb and λc (and using
ϕb, ϕc > 1 for interior optima) gives

0 = ∂J
∂λb

= −1
γ

Ab λϕb−1
b i−ζb + ∆b(i) =⇒ λb(i, n) =

[
γ ∆b(i)

Ab

iζb

] 1
ϕb−1

, (B.24)

0 = ∂J
∂λc

= −1
γ

Ac λϕc−1
c i−ζc + ∆c =⇒ λc(i, n) =

[
γ ∆c

Ac

iζc

] 1
ϕc−1

. (B.25)

Crucially, the marginal benefits ∆b(i) = a(i+1)−a(i)+ b and ∆c = b do not depend on n, and the
cost terms depend on (i, λ·) but not on n. Hence the optimal policies obtained from (B.24)–(B.25)
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are functions of i only:

λb(i) =
γ

(
a(i+1) − a(i) + b

)
Ab

iζb


1

ϕb−1

, λc(i) =
[

γ b

Ac

iζc

] 1
ϕc−1

. (B.26)

Substituting (B.26) back into the HJB and collecting terms yields the stationary Bellman
equation in efficiency units:

r
[
a(i) + bn

]
= π̄ n + gQ

[
a(i) + bn

]
− 1

γ

[
Ab

ϕb

λb(i)ϕbi−ζb + Ac

ϕc

λc(i)ϕci−ζc

]

+ λb(i)
{

a(i+1) − a(i) + b
}

+ λc(i) b − ξi
{

a(i) − a(i−1)
}

− µn b. (B.27)

Matching coefficients on n in (B.27) and using r = ρ + gQ (Euler equation) gives

(ρ + µ) b = π̄ =⇒ b = π̄

ρ + µ
. (B.28)

The i–block of (B.27) then delivers the one–dimensional recursion for a(i):

ρ a(i) = −1
γ

[
Ab

ϕb

λb(i)ϕbi−ζb + Ac

ϕc

λc(i)ϕci−ζc

]
+λb(i)

{
a(i+1)−a(i)+b

}
+λc(i) b−ξi

{
a(i)−a(i−1)

}
.

(B.29)
Equations (B.26)–(B.29) verify the conjecture (B.22): the FOCs first deliver optimal λb, λc; these
depend on i only (not on n or t); b is constant by (B.28); and a(i) solves the stationary recursion
(B.29). Labor market clearing condition thus reads

LP + LR = LP + Ae

ϕb

ηϕb +
∑
i,n

[
Ab

ϕb

λb(i)ϕbi−ζb + Ac

ϕc

λc(i)ϕci−ζc

]
Φ(i, n) = 1,

where LP is given by equation (B.11), and Φ(i, n) denotes the stationary firm distribution
characterized by equation (B.33).

Entry rate and creative destruction. Let b̃ E ≡ a(1) − a(0) + b denote the efficiency–units
value of creating a new firm with state (1, 1) relative to (0, 0). Using the first–order condition
(B.21) and Vt(1, 1) − Vt(0, 0) = Qt b̃ E with wt = Qt/γ,

ηt =
(

Qt b̃ E

Ae wt

) 1
ϕb−1

=
(

γ b̃ E

Ae

) 1
ϕb−1

≡ η, (B.30)
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which is time invariant on a BGP. The aggregate improvement (product creative destruction)
intensity per line is

Λ = η +
∑
i,n

[
λb(i) + λc(i)

]
Φ(i, n), (B.31)

and, by symmetry, each existing product faces displacement at the per–product hazard

µt ≡ Λ (constant over time), (B.32)

verifying the guess of constant creative destruction along BGP.

Equilibrium firm distribution. Setting the Kolmogorov forward equation to zero gives, for
all i, n ∈ N0,

0 = λb(i−1) Φ(i−1, n−1) 1{i≥1, n≥1}︸ ︷︷ ︸
novel inflow

+ λc(i) Φ(i, n−1) 1{n≥1}︸ ︷︷ ︸
combination inflow

+ ξ(i+1) Φ(i+1, n)︸ ︷︷ ︸
ingredient depreciation inflow

+ µ(n+1) Φ(i, n+1)︸ ︷︷ ︸
creative destruction inflow

+ η 1{i=1, n=1}︸ ︷︷ ︸
entry

−
[
λb(i) + λc(i) + ξi + µn

]
Φ(i, n)︸ ︷︷ ︸

outflows

. (B.33)

Intuitively, mass reaches state (i, n) via: (i) a novel success from (i − 1, n − 1) at rate λb(i − 1);
(ii) a combinatorial success from (i, n − 1) at rate λc(i); (iii) ingredient depreciation from (i + 1, n)
at rate ξ(i + 1); (iv) creative destruction from (i, n + 1) at rate µ(n + 1); and (v) entry places
mass at (1, 1) at rate η. Symmetrically, firms exit (i, n) due to their own successes, depreciation,
and product destruction.

Growth rate. Each improvement multiplies the upgraded line’s quality by γ, so over [t, t+dt]
a fraction Λ dt of lines experience a jump of size ln γ in log quality. Therefore

ln Qt+dt =
∫ 1

0
ln qi,t+dt di =

∫ 1

0
ln qi,t di + Λ dt ln γ = ln Qt + Λ dt ln γ. (B.34)

Divide by dt and let dt → 0:
Q̇t

Qt

= Λ ln γ ≡ gQ,t. (B.35)

On a BGP, gQ = Λ ln γ and, with Yt = QtL
P and Ct = Yt on the BGP, it follows that

gY = gC = gQ, and the Euler equation pins down the interest rate r = ρ + gQ.
By embedding a minimal macro block into the baseline model, I show that the rate of creative

destruction implied by firms’ innovation decisions maps directly into aggregate growth, scaled by
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the innovation step size γ.
This extension also introduces a standard “standing on giants’ shoulders” force: the private

value of an innovation does not internalize the option value it creates for future innovators, so
equilibrium innovation intensity can be inefficiently low relative to the social optimum (Klette
and Kortum, 2002). This motivates the policy study in Section 6.

C Proofs on Firm Dynamic Problem

C.1 Proof of proposition 1

Proof of Proposition 1. Conjecture V (i, n) = a(i) + b n with b > 0 and plug this guess into
maintext equation (4.4). Under this conjecture,

V (i+1, n+1) − V (i, n) = a(i+1) − a(i) + b,

V (i, n+1) − V (i, n) = b,

V (i, n) − V (i−1, n) = a(i) − a(i−1).

FOCs for λb, λc. Taking derivatives of the right-hand side of maintext equation (4.4) with
respect to (λb, λc) (using the R&D cost terms Ab

ϕb
i−ζbλϕb

b and Ac

ϕc
i−ζcλϕc

c with ϕb, ϕc > 1), we obtain

[
V (i+1, n+1) − V (i, n)

]
− Abi

−ζbλϕb−1
b = 0,[

V (i, n+1) − V (i, n)
]

− Aci
−ζcλϕc−1

c = 0,

hence, using the differences above,

λb(i) =
(

a(i+1) − a(i) + b

Ab i−ζb

) 1
ϕb−1

, λc(i) =
(

b

Ac i−ζc

) 1
ϕc−1

. (C.1)

Pinning down b. Plug V (i, n) = a(i) + bn into maintext equation (4.4) and collect the terms
that are proportional to n on both sides. Using V (i, n) − V (i, n−1) = b, the creative destruction
term contributes −µn b, while the flow-profit term is π̄n. Equating coefficients of n yields

r b = π̄ − µ b ⇒ b = π̄

r + µ
.

Reduced Bellman equation for a(i). Subtracting the linear-in-n component from maintext
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equation (4.4), the value equation collapses to a one-dimensional recursion in i:

r a(i) = max
λb,λc

{
− Ab

ϕb

i−ζbλϕb
b − Ac

ϕc

i−ζcλϕc
c + λb

[
a(i+1) − a(i) + b

]
+ λc b − ξ i

[
a(i) − a(i−1)

]}
.

(C.2)

Substitute the optimal policies (C.1) back into (C.2). Using the generic maximization maxλ≥0{λ∆−
A
ϕ

i−ζλϕ} with ϕ > 1 gives the value ϕ−1
ϕ

(A i−ζ)−1/(ϕ−1)∆ϕ/(ϕ−1). Therefore,

r a(i) = ϕb − 1
ϕb

(
Ab i−ζb

)− 1
ϕb−1

[
a(i+1) − a(i) + b

] ϕb
ϕb−1 + ϕc − 1

ϕc

(
Ac i−ζc

)− 1
ϕc−1 b

ϕc
ϕc−1 − ξ i

[
a(i) − a(i−1)

]
.

(C.3)

Conclusion. Equations (C.1)–(C.3), together with b = π̄/(r + µ), verify that the conjectured
form V (i, n) = a(i) + bn is consistent with maintext equation (4.4), pin down the one-dimensional
recursion for a(i), and deliver the policy rules λb(i), λc(i) that depend only on i. This proves the
proposition. □

C.2 Proof of proposition 2

Proof of Proposition 2. Focus on a stationary equilibrium in which the cross-sectional distribution
is time-invariant:

Φ̇t(i) = 0 for all i ≥ 0,

and drop the time subscript to write Φ(i). Under stationarity, maintext equation (4.10) implies,
for each interior state i ≥ 2,

0 = λb(i−1) Φ(i−1) + ξ (i+1) Φ(i+1) −
[
λb(i) + ξ i

]
Φ(i), (C.4)

and, at the boundary i = 1 (where entry occurs at rate η),

0 = η + 2ξ Φ(2) −
[
λb(1) + ξ

]
Φ(1). (C.5)

Link between i and i+1. Define the net probability current crossing the link (i, i+1) (positive
when mass flows from i to i+1) by

J(i) ≡ λb(i) Φ(i) − ξ (i+1) Φ(i+1), i ≥ 0. (C.6)

Using (C.6), the right-hand side of (C.4) can be written as λb(i−1)Φ(i−1) + ξ(i+1)Φ(i+1) −
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[λb(i) + ξi]Φ(i) = J(i−1) − J(i). Thus (C.4) is equivalent to

0 = J(i−1) − J(i), i ≥ 2, (C.7)

so J(i) is constant in i on {1, 2, . . . }:

J(i) = J for all i ≥ 1. (C.8)

Base case i = 1 (entry). Rewrite (C.5) using (C.6) at i = 1:

0 = η −
[
λb(1)Φ(1) − 2ξ Φ(2)

]
− ξ Φ(1) = η − J(1) − ξ Φ(1).

Using (C.8) we obtain
J = η − ξ Φ(1). (C.9)

Stationarity with finite mass and no sink at large i requires that there be no net drift of probability
mass to infinity, hence the constant current must be zero: J = 0. Equation (C.9) then pins down
the boundary mass

Φ(1) = η

ξ
. (C.10)

Interior states i > 1. With J = 0, the definition (C.6) yields the pairwise balance across every
adjacent link,

λb(i) Φ(i) = ξ (i+1) Φ(i+1), i ≥ 1, (C.11)

which is equivalent to the one-step forward recursion

Φ(i+1) = λb(i)
ξ (i+1) Φ(i), i ≥ 1. (C.12)

Conclusion. Setting Φ̇t(i) = 0 in maintext equation (4.10) implies that the adjacent-state
current J(i) is constant across links; the boundary equation at i = 1 fixes J = η − ξΦ(1), and the
no-drift condition yields J = 0, which pins down Φ(1) = η/ξ. The pairwise balance (C.11) then
gives the recursion (C.12) for all i > 1, establishing the proposition. □

C.3 Proof of proposition 3

Proof of Proposition 3. Conjecture that the value function is linear in the number of products at
each time t:

Vt(i, n) = at(i) + bt n, bt > 0,
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and plug this guess into maintext equation (6.2). Under the conjecture,

Vt(i+1, n+1) − Vt(i, n) = at(i+1) − at(i) + bt,

Vt(i, n+1) − Vt(i, n) = bt,

Vt(i, n) − Vt(i−1, n) = at(i) − at(i−1),

V̇t(i, n) = ȧt(i) + ḃt n.

FOCs for λb, λc. Differentiating the right-hand side with respect to (λb, λc) and using the cost
exponents ϕb, ϕc > 1,

[
ktVt(i + 1, n + 1) + (1 − kt)Vt(i + 1, n) − Vt(i, n)

]
− Ab i−ζbλϕb−1

b = 0,[
Vt(i, n + 1) − Vt(i, n)

]
− Ac i−ζcλϕc−1

c = 0,

where kt ≡ π(It) + (1 − π(It))p is the probability that a novel success also yields a product at
time t. Hence the optimal intensities are

λb(i) =
(

at(i+1) − at(i) + ktbt

Ab i−ζb

) 1
ϕb−1

, λc(i) =
(

bt

Ac i−ζc

) 1
ϕc−1

. (C.13)

Pinning down bt. Collect the terms in maintext equation (6.2) that are proportional to n on the
left-hand side and on the right-hand side. On the left-hand side, the coefficient on n is rbt. On the
right-hand side, the capital gain term contributes ḃt n (using V̇t(i, n) = ȧt(i) + ḃt n), the flow-profit
term contributes π̄ n and the creative-destruction term contributes −µt n [Vt(i, n) − Vt(i, n−1)] =
−µt n bt. Equating the coefficients on n on the left-hand side and right-hand side gives

r bt = π̄ + ḃt − µtbt,

which is the law of motion for bt stated in the proposition.

Reduced Bellman equation for at(i). Subtract the linear-in-n component from maintext
equation (6.2). Using the optimal policies in (C.13), the remaining one-dimensional problem in i

is

r at(i) − ȧt(i) = max
λb,λc

{
− Ab

ϕb

i−ζbλϕb
b − Ac

ϕc

i−ζcλϕc
c + λb

[
at(i+1) − at(i) + ktbt

]
+ λc bt − ξ i

[
at(i) − at(i−1)

]}
.

(C.14)

Generically, maximization maxλ≥0{λ∆−A
ϕ

i−ζλϕ} with ϕ > 1 gives the value ϕ−1
ϕ

(A i−ζ)−1/(ϕ−1)∆ϕ/(ϕ−1).
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Applying this expression to the two R&D margins in (C.14) yields the reduced recursion

r at(i) − ȧt(i) =ϕb − 1
ϕb

(
Ab i−ζb

)− 1
ϕb−1

[
at(i+1) − at(i) + ktbt

] ϕb
ϕb−1 + ϕc − 1

ϕc

(
Ac i−ζc

)− 1
ϕc−1

[
bt

] ϕc
ϕc−1

− ξ i
[
at(i) − at(i−1)

]
. (C.15)

Conclusion. The expressions (C.13), the law of motion r bt = π̄ + ḃt − µtbt, and the one-
dimensional recursion (C.15) verify that the conjecture Vt(i, n) = at(i) + btn is consistent with
maintext equation (6.2), determine bt and at(i), and imply that the optimal policies λb(i) and
λc(i) depend on i but not on n. □

D Robustness Checks

D.1 R&D-to-net-income ratio

In the baseline calibration (Section 5), I target a moderate R&D-to-net-income ratio of 0.8. This
section recalibrates the model to a higher ratio of 1.0 and shows that it fits both targeted moments
and untargeted patterns well and implies a similar contribution of combinatorial innovation.
Results are reported in Tables D.1 – D.3 and Figure D.1.

Table D.1: Target higher R&D-to-net-income ratio: Calibration and parameter choice.

Panel A: Parameters calibrated externally

Parameter Symbol Value Parameter Symbol Value

interest rate r 2% R&D curvature (ϕb, ϕc) 2

Panel B: Parameters calibrated through moment matching

Parameter Symbol Value Moments Data Model

novel R&D, scale Ab 55 pharma R&D / net income 1.0 1.0

comb. R&D, scale Ac 75 share of within-firm comb. drugs 38% 35%

entry novel R&D, scale Ae 200 entrants / active firms 26% 21%

novel R&D knowledge elas. ζb 0.50 ing. share, top 20% firms 56% 55%

comb. R&D knowledge elas. ζc 1.38 value: novel / combinatorial 1.6 1.6

depreciation rate ξ 0.15 ingredient hazard rate 0.15 0.15
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Note: This figure reports the model implications by targeting a higher R&D-to-net-income ratio. Variable
definitions are the same as Figure 6. Parameter values are reported in Table D.1.

Figure D.1: Target higher R&D-to-net-income ratio: Knowledge and product concentration

Table D.2: Target higher R&D-to-net-income ratio: Heterogeneous innovation across firms.

(1) (2) (3) (4) (5) (6) (7) (8)

nnew
f,t inew

f,t %novelf,t %combf,t nnew
f,t inew

f,t %novelf,t %combf,t

knowledge, ln(itotal
f,t ) 0.29 0.18 -0.06 0.06 0.44 0.27 -0.09 0.09

(0.00) (0.01) (0.00) (0.00) (0.02) (0.02) (0.01) (0.01)

product, ln(ntotal
f,t ) -0.13 -0.08 0.03 -0.03

(0.02) (0.02) (0.01) (0.01)

period fixed effect ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

R2 0.02 0.01 – 0.02 0.01 –

observations 92,267 92,267 54,482 92,267 92,267 54,482

Note: This table reports the model implications by targeting a higher R&D-to-net-income ratio. Variable
definitions are the same as Table 7. Parameter values are reported in Table D.1.
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Table D.3: Target higher R&D-to-net-income ratio: Contribution of combinatorial innovation.

Baseline No recombination ∆ (level) ∆ (%)

Product displacement dynamics

aggregate creative-destruction rate 0.201 0.148 −0.053 −26%

incumbent-driven novel displacement 0.088 0.101 +0.013 +15%

incumbent-driven recomb. displacement 0.071 0 −0.071 −100%

entry-driven displacement 0.042 0.047 +0.005 +12%

Concentration

top 20% (by knowledge) share of products 59% 54% −5% −8%

Note: This table reports the model implications by targeting a higher R&D-to-net-income ratio. Variable
definitions are the same as Table 8. Parameter values are reported in Table D.1.

D.2 Value difference between novel and combinatorial innovation

In the baseline calibration (Section 5), I target a value ratio of novel to combinatorial innovation at
1.6. This section recalibrates the model to 1.4 and 1.8 and shows that it fits both targeted moments
and untargeted patterns well and implies a similar contribution of combinatorial innovation.
Results are reported in Tables D.4 – D.9 and Figures D.2 – D.3.

Table D.4: Target higher value difference: Calibration and parameter choice.

Panel A: Parameters calibrated externally

Parameter Symbol Value Parameter Symbol Value

interest rate r 2% R&D curvature (ϕb, ϕc) 2

Panel B: Parameters calibrated through moment matching

Parameter Symbol Value Moments Data Model

novel R&D, scale Ab 120 pharma R&D / net income 0.8 0.8

comb. R&D, scale Ac 160 share of within-firm comb. drugs 38% 38%

entry novel R&D, scale Ae 750 entrants / active firms 26% 21%

novel R&D knowledge elas. ζb 0.55 ing. share, top 20% firms 56% 56%

comb. R&D knowledge elas. ζc 1.69 value: novel / combinatorial 1.8 1.8

depreciation rate ξ 0.15 ingredient hazard rate 0.15 0.15
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Note: This figure reports the model implications by targeting a higher value difference between novel and
combinatorial innovation. Variable definitions are the same as Figure 6. Parameter values are reported in Table
D.4.

Figure D.2: Target higher value difference: Knowledge and product concentration

Table D.5: Target higher value difference: Heterogeneous innovation across firms.

(1) (2) (3) (4) (5) (6) (7) (8)

nnew
f,t inew

f,t %novelf,t %combf,t nnew
f,t inew

f,t %novelf,t %combf,t

knowledge, ln(itotal
f,t ) 0.42 0.26 -0.08 0.08 0.55 0.33 -0.10 0.10

(0.01) (0.01) (0.00) (0.00) (0.02) (0.02) (0.01) (0.01)

product, ln(ntotal
f,t ) -0.10 -0.06 0.02 -0.02

(0.02) (0.02) (0.01) (0.01)

period fixed effect ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

R2 0.04 0.01 – 0.04 0.01 –

observations 83,398 83,398 46,939 83,398 83,398 46,939

Note: This table reports the model implications by targeting a higher value difference between novel and
combinatorial innovation. Variable definitions are the same as Table 7. Parameter values are reported in Table
D.4.
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Table D.6: Target higher value difference: Contribution of combinatorial innovation.

Baseline No recombination ∆ (level) ∆ (%)

Product displacement dynamics

aggregate creative-destruction rate 0.097 0.066 −0.031 −32%

incumbent-driven novel displacement 0.039 0.042 +0.003 +8%

incumbent-driven recomb. displacement 0.037 0 −0.037 −100%

entry-driven displacement 0.021 0.023 +0.002 +10%

Concentration

top 20% (by knowledge) share of products 62% 54% −8% −13%

Note: This table reports the model implications by targeting a higher value difference between novel and
combinatorial innovation. Variable definitions are the same as Table 8. Parameter values are reported in Table
D.4.

Table D.7: Target lower value difference: Calibration and parameter choice.

Panel A: Parameters calibrated externally

Parameter Symbol Value Parameter Symbol Value

interest rate r 2% R&D curvature (ϕb, ϕc) 2

Panel B: Parameters calibrated through moment matching

Parameter Symbol Value Moments Data Model

novel R&D, scale Ab 80 pharma R&D / net income 0.8 0.8

comb. R&D, scale Ac 100 share of within-firm comb. drugs 38% 36%

entry novel R&D, scale Ae 700 entrants / active firms 26% 21%

novel R&D knowledge elas. ζb 0.25 ing. share, top 20% firms 56% 52%

comb. R&D knowledge elas. ζc 1.09 value: novel / combinatorial 1.4 1.5

depreciation rate ξ 0.15 ingredient hazard rate 0.15 0.15
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Note: This figure reports the model implications by targeting a lower value difference between novel and
combinatorial innovation. Variable definitions are the same as Figure 6. Parameter values are reported in Table
D.7.

Figure D.3: Target lower value difference: Knowledge and product concentration

Table D.8: Target lower value difference: Heterogeneous innovation across firms.

(1) (2) (3) (4) (5) (6) (7) (8)

nnew
f,t inew

f,t %novelf,t %combf,t nnew
f,t inew

f,t %novelf,t %combf,t

knowledge, ln(itotal
f,t ) 0.21 0.12 -0.05 0.05 0.30 0.17 -0.07 0.07

(0.00) (0.01) (0.00) (0.00) (0.02) (0.02) (0.01) (0.01)

product, ln(ntotal
f,t ) -0.08 -0.05 0.02 -0.02

(0.01) (0.02) (0.01) (0.01)

period fixed effect ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

R2 0.01 0.00 – 0.01 0.00 –

observations 100,825 100,825 63,399 100,825 100,825 63,399

Note: This table reports the model implications by targeting a lower value difference between novel and
combinatorial innovation. Variable definitions are the same as Table 7. Parameter values are reported in Table
D.7.
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Table D.9: Target lower value difference: Contribution of combinatorial innovation.

Baseline No recombination ∆ (level) ∆ (%)

Product displacement dynamics

aggregate creative-destruction rate 0.108 0.078 −0.030 −28%

incumbent-driven novel displacement 0.047 0.054 +0.007 +15%

incumbent-driven recomb. displacement 0.039 0 −0.039 −100%

entry-driven displacement 0.022 0.024 +0.002 +9%

Concentration

top 20% (by knowledge) share of products 55% 52% −3% −5%

Note: This table reports the model implications by targeting a lower value difference between novel and
combinatorial innovation. Variable definitions are the same as Table 8. Parameter values are reported in Table
D.7.

D.3 R&D curvatures

In the baseline calibration (Section 5), I externally set R&D curvature parameters (ϕb, ϕc) to
2, which implies an elasticity of patents with respect to R&D expenditures of 0.5. This section
recalibrates the model to 0.4 and 0.6 and shows that it fits both targeted moments and untargeted
patterns well and implies a similar contribution of combinatorial innovation. Results are reported
in Tables D.10 – D.15 and Figures D.4 – D.5.

Table D.10: Target lower R&D curvature: Calibration and parameter choice.

Panel A: Parameters calibrated externally

Parameter Symbol Value Parameter Symbol Value

interest rate r 2% R&D curvature (ϕb, ϕc) 1.7

Panel B: Parameters calibrated through moment matching

Parameter Symbol Value Moments Data Model

novel R&D, scale Ab 100 pharma R&D / net income 0.8 0.8

comb. R&D, scale Ac 150 share of within-firm comb. drugs 38% 36%

entry novel R&D, scale Ae 600 entrants / active firms 26% 21%

novel R&D knowledge elas. ζb 0.40 ing. share, top 20% firms 56% 59%

comb. R&D knowledge elas. ζc 1.30 value: novel / combinatorial 1.6 1.7

depreciation rate ξ 0.15 ingredient hazard rate 0.15 0.15
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Note: This figure reports the model implications by targeting a lower R&D curvature. Variable definitions are the
same as Figure 6. Parameter values are reported in Table D.10.

Figure D.4: Target lower R&D curvature: Knowledge and product concentration

Table D.11: Target lower R&D curvature: Heterogeneous innovation across firms.

(1) (2) (3) (4) (5) (6) (7) (8)

nnew
f,t inew

f,t %novelf,t %combf,t nnew
f,t inew

f,t %novelf,t %combf,t

knowledge, ln(itotal
f,t ) 0.49 0.31 -0.09 0.09 0.57 0.36 -0.10 0.10

(0.01) (0.01) (0.00) (0.00) (0.03) (0.03) (0.01) (0.01)

product, ln(ntotal
f,t ) -0.07 -0.05 0.01 -0.01

(0.02) (0.02) (0.01) (0.01)

period fixed effect ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

R2 0.05 0.02 – 0.05 0.02 –

observations 80,509 80,509 43,699 80,509 80,509 43,699

Note: This table reports the model implications by targeting a lower R&D curvature. Variable definitions are
the same as Table 7. Parameter values are reported in Table D.10.
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Table D.12: Target lower R&D curvature: Contribution of combinatorial innovation.

Baseline No recombination ∆ (level) ∆ (%)

Product displacement dynamics

aggregate creative-destruction rate 0.046 0.033 −0.013 −28%

incumbent-driven novel displacement 0.021 0.021 +0.000 +0%

incumbent-driven recomb. displacement 0.017 0 −0.017 −100%

entry-driven displacement 0.010 0.012 +0.002 +20%

Concentration

top 20% (by knowledge) share of products 64% 55% −9% −14%

Note: This table reports the model implications by targeting a lower R&D curvature. Variable definitions are
the same as Table 8. Parameter values are reported in Table D.10.

Table D.13: Target higher R&D curvature: Calibration and parameter choice.

Panel A: Parameters calibrated externally

Parameter Symbol Value Parameter Symbol Value

interest rate r 2% R&D curvature (ϕb, ϕc) 2.5

Panel B: Parameters calibrated through moment matching

Parameter Symbol Value Moments Data Model

novel R&D, scale Ab 70 pharma R&D / net income 0.8 0.8

comb. R&D, scale Ac 90 share of within-firm comb. drugs 38% 39%

entry novel R&D, scale Ae 300 entrants / active firms 26% 19%

novel R&D knowledge elas. ζb 0.43 ing. share, top 20% firms 56% 52%

comb. R&D knowledge elas. ζc 1.55 value: novel / combinatorial 1.6 1.7

depreciation rate ξ 0.15 ingredient hazard rate 0.15 0.15
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Note: This figure reports the model implications by targeting a higher R&D curvature. Variable definitions are
the same as Figure 6. Parameter values are reported in Table D.13.

Figure D.5: Target higher R&D curvature: Knowledge and product concentration

Table D.14: Target higher R&D curvature: Heterogeneous innovation across firms.

(1) (2) (3) (4) (5) (6) (7) (8)

nnew
f,t inew

f,t %novelf,t %combf,t nnew
f,t inew

f,t %novelf,t %combf,t

knowledge, ln(itotal
f,t ) 0.20 0.12 -0.04 0.04 0.29 0.15 -0.07 0.07

(0.00) (0.01) (0.00) (0.00) (0.02) (0.02) (0.01) (0.01)

product, ln(ntotal
f,t ) -0.08 -0.03 0.02 -0.02

(0.01) (0.02) (0.01) (0.01)

period fixed effect ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

R2 0.01 0.00 – 0.01 0.00 –

observations 84,918 84,918 55,575 84,918 84,918 55,575

Note: This table reports the model implications by targeting a higher R&D curvature. Variable definitions are
the same as Table 7. Parameter values are reported in Table D.13.
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Table D.15: Target higher R&D curvature: Contribution of combinatorial innovation.

Baseline No recombination ∆ (level) ∆ (%)

Product displacement dynamics

aggregate creative-destruction rate 0.386 0.267 −0.119 −31%

incumbent-driven novel displacement 0.164 0.190 +0.026 +16%

incumbent-driven recomb. displacement 0.149 0 −0.149 −100%

entry-driven displacement 0.077 0.073 +0.004 +5%

Concentration

top 20% (by knowledge) share of products 55% 52% −3% −5%

Note: This table reports the model implications by targeting a higher R&D curvature. Variable definitions are
the same as Table 8. Parameter values are reported in Table D.13.

E Additional Results

Table E.16: Number of patented drugs by firm knowledge: 1990–2010.

(1) (2) (3) (4) (5) (6) (7) (8)

nnew,1
f,t nnew,2

f,t nnew,3
f,t nnew,4

f,t nnew,1
f,t nnew,2

f,t nnew,3
f,t nnew,4

f,t

knowledge, ln(itotal
f,t ) 0.98 0.55 1.87 1.29 0.77 0.81 1.20 0.53

(0.11) (0.05) (0.16) (0.16) (0.42) (0.19) (0.50) (0.44)

size, ln(ntotal
f,t ) 0.13 -0.16 0.40 0.47

(0.25) (0.11) (0.27) (0.29)

period fixed effect ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

R2 0.46 0.30 0.79 0.49 0.46 0.30 0.79 0.50

observations 265 265 265 265 265 265 265 265

Note: The sample spans 1990 – 2010 and is split into four five-year periods. All columns use Poisson
pseudo–maximum likelihood specification with period fixed effects: E[yf,t|Xf,t] = exp(α + βi ln(itotal

f,t ) +
βn ln(ntotal

f,t ) + γt). The dependent variables are the number of new drugs patented by firm f in period t

classified into four types: types 1, 2, 3, and 4 respectively refer to novel, across-firm combination, within-firm
combination, and refinement, as defined in the note of Figure 3. Columns (1) - (2) include firm knowledge
only (ln(itotal

f,t )), where itotal
f,t is measured as the number of distinct functional groups used in f ’s patented drugs

by the start of period t. Columns (3) - (4) include both firm knowledge and size (ln(itotal
f,t ), ln(ntotal

f,t )), where
ntotal

f,t is measured as its total number of patented drugs by the start of period t. Firms with no new patented
drugs during the period are treated as exits and thus dropped. Standard errors are clustered at firm level and
reported in parentheses.
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Table E.17: Number of new functional groups by firm knowledge: 1990–2010.

(1) (2) (3) (4)

inew,market
f,t inew,firm

f,t inew,market
f,t inew,firm

f,t

knowledge, ln(itotal
f,t ) 1.00 0.21 0.87 0.41

(0.09) (0.04) (0.38) (0.15)

size, ln(ntotal
f,t ) 0.08 -0.13

(0.23) (0.09)

period fixed effect ✓ ✓ ✓ ✓

R2 0.45 0.08 0.45 0.09

observations 265 265 265 265

Note: The sample spans 1990 – 2010 and is split into four five-year periods. All columns use Poisson
pseudo–maximum likelihood specification with period fixed effects: E[yf,t|Xf,t] = exp(α + βi ln(itotal

f,t ) +
βn ln(ntotal

f,t ) + γt). The dependent variables count the number of functional groups newly adopted in drugs
patented by firm f over period t. Columns (1) and (3) count functional groups that are new to the market;
columns (2) and (4) count groups that are new to firm f but previously used by other firms. Columns (1) - (2)
include firm knowledge only (ln(itotal

f,t )), where itotal
f,t is measured as the number of distinct functional groups

used in f ’s patented drugs by the start of period t. Columns (3) - (4) include both firm knowledge and size
(ln(itotal

f,t ), ln(ntotal
f,t )), where ntotal

f,t is measured as its total number of patented drugs by the start of period t.
Firms with no new patented drugs during the period are treated as exits and thus dropped. Standard errors are
clustered at firm level and reported in parentheses.
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Table E.18: Innovation outcomes and specialization by firm knowledge: random benchmark.

(1) (2) (3) (4) (5)

nnew
f,t inew

f,t %novelf,t %combacross
f,t %combwithin

f,t

knowledge, ln(itotal
f,t ) 0.06 0.13 0.03 -0.05 0.02

(0.14) (0.13) (0.03) (0.03) (0.01)

size, ln(ntotal
f,t ) 0.60 0.23 -0.02 -0.02 0.04

(0.11) (0.09) (0.02) (0.02) (0.01)

period fixed effect ✓ ✓ ✓ ✓ ✓

R2 0.63 0.34 –

observations 265 265 265

Note: This table reports placebo results from a simulated panel. I hold firms’ pre-1990 drug portfolios fixed
and fix the functional groups universe to those observed by 2010. For 1990 – 2010, for each observed new drug
patented by firm f with k distinct functional groups, I generate one simulated drug with k distinct functional
groups drawn at random (without replacement) from the 2010 functional group universe. I then re-estimate
the specifications in Tables 2 and 3 using the simulated data. Variable definitions and empirical specifications
follow those tables. Results are stable across repeated simulations.
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Table E.19: Model-implied regression coefficients for innovation outcomes: (if,t, nf,t).

(1) (2) (3) (4) (5) (6) (7) (8)

nnew
f,t inew

f,t %novelf,t %combf,t nnew
f,t inew

f,t %novelf,t %combf,t

knowledge, ln(if,t) 0.90 0.60 -0.16 0.16 0.91 0.61 -0.16 0.16

(0.01) (0.01) (0.00) (0.00) (0.01) (0.01) (0.00) (0.00)

product, ln(nf,t) 0.00 -0.01 -0.00 0.00

(0.01) (0.01) (0.00) (0.00)

period fixed effect ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

R2 0.08 0.03 – 0.09 0.03 –

observations 86,818 86,818 50,644 77,964 77,964 46,304

Note: The simulated dataset is constructed to match the empirical dataset in time frame, variable definitions,
and sample structure, but with a larger simulated population of 50,000 firms for improved precision. Columns
(1) – (2) use PPML specification (5.1). Columns (3) – (4) use fractional logit specification (see equation 5.2).
Columns (5) – (6) use PPML specification (5.1) but include the portfolio size control ln(nf,t). Columns (7) –
(8) use fractional logit specification (5.2) but include the portfolio size control ln(nf,t). The dependent variables
are the number of new drugs patented over the subsequent five-year period for columns (1) and (5); the number
of new ingredients used in those drugs for columns (2) and (6); the fraction of those drugs being novel for
columns (3) and (7); and the fraction of those drugs being combinatorial for columns (4) and (8). Knowledge
ln(if,t) and product portfolio ln(nf,t) are measured as the log-transformations of firm state variables (i, n).
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Table E.20: Innovation specialization by firm knowledge: 1990–2010

(1) (2) (3) (4)

%novelf,t + %combacross
f,t %combwithin

f,t %novelf,t + %combacross
f,t %combwithin

f,t

knowledge, ln(itotal
f,t ) -0.15 0.15 −0.09 0.13

(0.01) (0.01) (0.05) (0.04)

size, ln(ntotal
f,t ) −0.04 0.01

(0.03) (0.02)

period fixed effect ✓ ✓ ✓ ✓

observations 265 265

Note: The sample spans 1990–2010 and is split into four five-year periods. All columns estimate a fractional
multinomial logit specification with period fixed effects, analogous to equations (3.1 – 3.2), except that two
outcome categories are pooled into a single one. The dependent variables are shares of newly patented drugs.
Columns (1) and (3) pool “novel” (%novelf,t) and “across-firm combination” (%combacross

f,t ) into a single
category, i.e., drugs that require obtaining external knowledge and thus correspond to novel innovation in the
baseline model (Section 4). Columns (2) and (4) report the share of “within-firm combination” (%combwithin

f,t ),
i.e., drugs that combine internal knowledge and thus correspond to combinatorial innovation in the baseline
model. The omitted base category is refinement. Knowledge and size are defined as in Table 2. Firms with no
new patented drugs during the period are treated as exits and thus dropped. Standard errors are clustered at
firm level and reported in parentheses.
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